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Design via State Space

12

This chapter covers only state-space methods.

Chapter Learning Outcomes

After completing this chapter the student will be able to:

� Design a state-feedback controller using pole placement for systems represented in
phase-variable form to meet transient response specifications (Sections 12.1–12.2)

� Determine if a system is controllable (Section 12.3)

� Design a state-feedback controller using pole placement for systems not repre-
sented in phase-variable form to meet transient response specifications
(Section 12.4)

� Design a state-feedback observer using pole placement for systems represented in
observer canonical form (Section 12.5)

� Determine if a system is observable (Section 12.6)

� Design a state-feedback observer using pole placement for systems not represented
in observer canonical form (Section 12.7)

� Design steady-state error characteristics for systems represented in state space
(Section 12.8)
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Case Study Learning Outcomes

You will be able to demonstrate your knowledge of the chapter objectives with case
studies as follows:

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to specify all closed-loop poles and then design a state-feedback
controller to meet transient response specifications.

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to design an observer to estimate the states.

� Given the antenna azimuth position control system shown on the front endpapers,
you will be able to combine the controller and observer designs into a viable
compensator for the system.

12.1 Introduction

Chapter 3 introduced the concepts of state-space analysis and system modeling. We
showed that state-space methods, like transform methods, are simply tools for
analyzing and designing feedback control systems. However, state-space techniques
can be applied to a wider class of systems than transform methods. Systems with
nonlinearities, such as that shown in Figure 12.1, and multiple-input, multiple-output
systems are just two of the candidates for the state-space approach. In this book,
however, we apply the approach only to linear systems.

In Chapters 9 and 11, we applied frequency domain methods to system design.
The basic design technique is to create a compensator in cascade with the plant or in

FIGURE 12.1 A robot in a hospital
pharmacy selects medications by bar
code
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the feedback path that has the correct additional poles and zeros to yield a desired
transient response and steady-state error.

One of the drawbacks of frequency domain methods of design, using either
root locus or frequency response techniques, is that after designing the location of
the dominant second-order pair of poles, we keep our fingers crossed, hoping that
the higher-order poles do not affect the second-order approximation. What we
would like to be able to do is specify all closed-loop poles of the higher-order system.
Frequency domain methods of design do not allow us to specify all poles in systems
of order higher than 2 because they do not allow for a sufficient number of unknown
parameters to place all of the closed-loop poles uniquely. One gain to adjust, or
compensator pole and zero to select, does not yield a sufficient number of parame-
ters to place all the closed-loop poles at desired locations. Remember, to place
n unknown quantities, you need n adjustable parameters. State-space methods solve
this problem by introducing into the system (1) other adjustable parameters and
(2) the technique for finding these parameter values, so that we can properly place all
poles of the closed-loop system.1

On the other hand, state-space methods do not allow the specification of
closed-loop zero locations, which frequency domain methods do allow through
placement of the lead compensator zero. This is a disadvantage of state-space
methods, since the location of the zero does affect the transient response. Also, a
state-space design may prove to be very sensitive to parameter changes.

Finally, there is a wide range of computational support for state-space methods;
many software packages support the matrix algebra required by the design process.
However, as mentioned before, the advantages of computer support are balanced by
the loss of graphic insight into a design problem that the frequency domain methods
yield.

This chapter should be considered only an introduction to state-space design;
we introduce one state-space design technique and apply it only to linear systems.
Advanced study is required to apply state-space techniques to the design of systems
beyond the scope of this textbook.

12.2 Controller Design

This section shows how to introduce additional parameters into a system so that we
can control the location of all closed-loop poles. An nth-order feedback control
system has an nth-order closed-loop characteristic equation of the form

sn þ an�1s
n�1 þ � � � þ a1sþ a0 ¼ 0 ð12:1Þ

Since the coefficient of the highest power of s is unity, there are n coefficients whose
values determine the system’s closed-loop pole locations. Thus, if we can introduce
n adjustable parameters into the system and relate them to the coefficients in
Eq. (12.1), all of the poles of the closed-loop system can be set to any desired
location.

1 This is an advantage as long as we know where to place the higher-order poles, which is not always the
case. One course of action is to place the higher-order poles far from the dominant second-order poles or
near a closed-loop zero to keep the second-order system design valid. Another approach is to use optimal
control concepts, which are beyond the scope of this text.

12.2 Controller Design 665
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Topology for Pole Placement
In order to lay the groundwork for the approach, consider a plant represented in
state space by

_x ¼ Axþ Bu ð12:2aÞ

y ¼ Cx ð12:2bÞ

and shown pictorially in Figure 12.2(a), where light lines are scalars and the heavy
lines are vectors.

In a typical feedback control system, the output, y, is fed back to the summing
junction. It is now that the topology of the design changes. Instead of feeding back y,
what if we feed back all of the state variables? If each state variable is fed back to the
control, u, through a gain, ki, there would be n gains, ki, that could be adjusted to
yield the required closed-loop pole values. The feedback through the gains, ki, is
represented in Figure 12.2(b) by the feedback vector �K.

The state equations for the closed-loop system of Figure 12.2(b) can be written
by inspection as

_x ¼ Axþ Bu ¼ Axþ Bð�Kxþ rÞ ¼ ðA� BKÞxþ Br ð12:3aÞ

y ¼ Cx ð12:3bÞ

Before continuing, you should have a good idea of how the feedback system of
Figure 12.2(b) is actually implemented. As an example, assume a plant signal-flow
graph in phase-variable form, as shown in Figure 12.3(a). Each state variable is then
fed back to the plant’s input, u, through a gain, ki, as shown in Figure 12.3(b).
Although we will cover other representations later in the chapter, the phase-variable

FIGURE 12.2 a. State-space
representation of a plant; b. plant
with state-variable feedback
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form, with its typical lower companion system matrix, or the controller canonical
form, with its typical upper companion system matrix, yields the simplest evaluation
of the feedback gains. In the ensuing discussion, we use the phase-variable form to
develop and demonstrate the concepts. End-of-chapter problems will give you an
opportunity to develop and test the concepts for the controller canonical form.

The design of state-variable feedback for closed-loop pole placement consists
of equating the characteristic equation of a closed-loop system, such as that shown in
Figure 12.3(b), to a desired characteristic equation and then finding the values of the
feedback gains, ki.

If a plant like that shown in Figure 12.3(a) is of high order and not represented
in phase-variable or controller canonical form, the solution for the ki’s can be
intricate. Thus, it is advisable to transform the system to either of these forms, design
the ki’s, and then transform the system back to its original representation. We
perform this conversion in Section 12.4, where we develop a method for performing
the transformations. Until then, let us direct our attention to plants represented in
phase-variable form.
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FIGURE 12.3 a. Phase-
variable representation for
plant; b. plant with state-
variable feedback
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Pole Placement for Plants in Phase-Variable Form
To apply pole-placement methodology to plants represented in phase-variable form,
we take the following steps:

1. Represent the plant in phase-variable form.

2. Feed back each phase variable to the input of the plant through a gain, ki.

3. Find the characteristic equation for the closed-loop system represented in Step 2.

4. Decide upon all closed-loop pole locations and determine an equivalent charac-
teristic equation.

5. Equate like coefficients of the characteristic equations from Steps 3 and 4 and
solve for ki.

Following these steps, the phase-variable representation of the plant is given by
Eq. (12.2), with

A ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. ..
. ..

.

�a0 �a1 �a2 � � � �an�1

266664
377775; B ¼

0

0

..

.

1

266664
377775;

C ¼ ½ c1 c2 � � � cn � ð12:4Þ
The characteristic equation of the plant is thus

sn þ an�1s
n�1 þ � � � þ a1sþ a0 ¼ 0 ð12:5Þ

Now form the closed-loop system by feeding back each state variable to u, forming

u ¼ �Kx ð12:6Þ
where

K ¼ ½ k1 k2 � � � kn � ð12:7Þ
The ki’s are the phase variables’ feedback gains.

Using Eq. (12.3a) with Eqs. (12.4) and (12.7), the system matrix, A� BK, for
the closed-loop system is

A� BK ¼

0 1 0 � � � 0

0 0 1 � � � 0

..

. ..
. ..

. ..
. ..

.

�ða0 þ k1Þ �ða1 þ k2Þ �ða2 þ k3Þ � � � �ðan�1 þ knÞ

266664
377775 ð12:8Þ

Since Eq. (12.8) is in phase-variable form, the characteristic equation of the closed-
loop system can be written by inspection as

detðsI� ðA� BKÞÞ ¼ sn þ ðan�1 þ knÞsn�1 þ ðan�2 þ kn�1Þsn�2

þ � � � ða1 þ k2Þsþ ða0 þ k1Þ ¼ 0
ð12:9Þ

Notice the relationship between Eqs. (12.5) and (12.9). For plants represented in
phase-variable form, we can write by inspection the closed-loop characteristic
equation from the open-loop characteristic equation by adding the appropriate ki
to each coefficient.
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Now assume that the desired characteristic equation for proper pole place-
ment is

sn þ dn�1s
n�1 þ dn�2s

n�2 þ � � � þ d2s
2 þ d1sþ d0 ¼ 0 ð12:10Þ

where the di’s are the desired coefficients. Equating Eqs. (12.9) and (12.10), we
obtain

di ¼ ai þ kiþ1 i ¼ 0; 1; 2; . . . ; n� 1 ð12:11Þ

from which

kiþ1 ¼ di � ai ð12:12Þ

Now that we have found the denominator of the closed-loop transfer function,
let us find the numerator. For systems represented in phase-variable form, we
learned that the numerator polynomial is formed from the coefficients of the output
coupling matrix, C. Since Figures 12.3(a) and (b) are both in phase-variable form
and have the same output coupling matrix, we conclude that the numerators of their
transfer functions are the same. Let us look at a design example.

Example 12.1

Controller Design for Phase-Variable Form

PROBLEM: Given the plant

GðsÞ ¼ 20ðsþ 5Þ
sðsþ 1Þðsþ 4Þ ð12:13Þ

design the phase-variable feedback gains to yield 9.5% overshoot and a settling
time of 0.74 second.

SOLUTION: We begin by calculating the desired closed-loop characteristic equa-
tion. Using the transient response requirements, the closed-loop poles are
�5:4 � j7:2. Since the system is third-order, we must select another closed-loop
pole. The closed-loop system will have a zero at �5, the same as the open-loop
system. We could select the third closed-loop pole to cancel the closed-loop zero.
However, to demonstrate the effect of the third pole and the design process,
including the need for simulation, let us choose �5.1 as the location of the third
closed-loop pole.

Now draw the signal-flow diagram for the plant. The result is shown in
Figure 12.4(a). Next feed back all state variables to the control, u, through gains ki,
as shown in Figure 12.4(b).

Writing the closed-loop system’s state equations from Figure 12.4(b), we have

_x ¼
0 1 0

0 0 1

�k1 �ð4 þ k2Þ �ð5 þ k3Þ

264
375xþ 0

0

1

264
375r ð12:14aÞ

y ¼ ½ 100 20 0 �x ð12:14bÞ

12.2 Controller Design 669
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Comparing Eqs. (12.14) to Eqs. (12.3), we identify the closed-loop system
matrix as

A� BK ¼
0 1 0

0 0 1

�k1 �ð4 þ k2Þ �ð5 þ k3Þ

264
375 ð12:15Þ

To find the closed-loop system’s characteristic equation, form

detðsI� ðA� BKÞÞ ¼ s3 þ ð5 þ k3Þs2 þ ð4 þ k2Þsþ k1 ¼ 0 ð12:16Þ
This equation must match the desired characteristic equation,

s3 þ 15:9s2 þ 136:08sþ 413:1 ¼ 0 ð12:17Þ
formed from the poles �5:4 þ j7:2; �5:4 � j7:2, and �5.1, which were previously
determined.

Equating the coefficients of Eqs. (12.16) and (12.17), we obtain

k1 ¼ 413:1; k2 ¼ 132:08; k3 ¼ 10:9 ð12:18Þ

FIGURE 12.4 a. Phase-variable
representation for plant of
Example 12.1; b. plant with
state-variable feedback
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Finally, the zero term of the closed-loop transfer function is the same as the
zero term of the open-loop system, or ðsþ 5Þ.

Using Eqs. (12.14), we obtain the following state-space representation of the
closed-loop system:

_x ¼
0 1 0

0 0 1

�413:1 �136:08 �15:9

264
375 xþ

0

0

1

264
375r ð12:19aÞ

y ¼ ½ 100 20 0 �x ð12:19bÞ

The transfer function is

TðsÞ ¼ 20ðsþ 5Þ
s3 þ 15:9s2 þ 136:08sþ 413:1

ð12:20Þ

Figure 12.5, a simulation of the closed-loop system, shows 11.5% overshoot
and a settling time of 0.8 second. A redesign with the third pole canceling the zero
at �5 will yield performance equal to the requirements.

Since the steady-state response approaches 0.24 instead of unity, there is a
large steady-state error. Design techniques to reduce this error are discussed in
Section 12.8.

Students who are using MATLAB should now run ch12p1 in Appendix B.
You will learn how to use MATLAB to design a controller for phase
variables using pole placement. MATLAB will plot the step re-
sponse of the designed system. This exercise solves Example 12.1
using MATLAB.
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Skill-Assessment Exercise 12.1

PROBLEMS: For the plant

GðsÞ ¼ 100ðsþ 10Þ
sðsþ 3Þðsþ 12Þ

represented in the state space in phase-variable form by

_x¼ Axþ Bu ¼
0 1 0

0 0 1

0 �36 �15

264
375xþ 0

0

1

264
375u

y¼ Cx ¼ 1000 100 0½ �x
design the phase-variable feedback gains to yield 5% overshoot and a peak time of
0.3 second.

ANSWER: K ¼ ½ 2094 373:1 14:97 �
The complete solution is located at www.wiley.com/college/nise.

In this section, we showed how to design feedback gains for plants represented
in phase-variable form in order to place all of the closed-loop system’s poles at
desired locations on the s-plane. On the surface, it appears that the method should
always work for any system. However, this is not the case. The conditions that must
exist in order to uniquely place the closed-loop poles where we want them is the
topic of the next section.

12.3 Controllability

Consider the parallel form shown in Figure 12.6(a). To control the pole location of
the closed-loop system, we are saying implicitly that the control signal, u, can control
the behavior of each state variable in x. If any one of the state variables cannot be
controlled by the control u, then we cannot place the poles of the system where we
desire. For example, in Figure 12.6(b), if x1 were not controllable by the control
signal and if x1 also exhibited an unstable response due to a nonzero initial condition,
there would be no way to effect a state-feedback design to stabilize x1; x1 would
perform in its own way regardless of the control signal, u. Thus, in some systems, a
state-feedback design is not possible.

We now make the following definition based upon the previous discussion:

If an input to a system can be found that takes every state variable from a desired
initial state to a desired final state, the system is said to be controllable; otherwise,
the system is uncontrollable.

Pole placement is a viable design technique only for systems that are controllable.
This section shows how to determine, a priori, whether pole placement is a viable
design technique for a controller.

TryIt 12.1

Use MATLAB, the Control
System Toolbox, and the fol-
lowing statements to solve for
the phase-variable feedback
gains to place the poles of the
system in Skill-Assessment
Exercise 12.1 at
�3 þ j5; � 3 � j5, and �10.

A=[0 1 0
0 0 1
0 -36 -15]

B=[0;0;1]
poles=[-3+5j,...
-3-5j,-10]
K=acker(A,B,poles)
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Controllability by Inspection
We can explore controllability from another viewpoint: that of the state equation
itself. When the system matrix is diagonal, as it is for the parallel form, it is apparent
whether or not the system is controllable. For example, the state equation for
Figure 12.6(a) is

_x ¼
�a1 0 0

0 �a2 0

0 0 �a3

264
375xþ 1

1

1

264
375u ð12:21Þ

or

_x1 ¼ �a1x1 þ u ð12:22aÞ

_x2 ¼ �a2x2 þ u ð12:22bÞ

_x3 ¼ �a3x3 þ u ð12:22cÞ
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FIGURE 12.6 Comparison of
a. controllable and b. un-
controllable systems
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Since each of Eqs. (12.22) is independent and decoupled from the rest, the control u
affects each of the state variables. This is controllability from another perspective.

Now let us look at the state equations for the system of Figure 12.6(b):

_x ¼
�a4 0 0

0 �a5 0

0 0 �a6

264
375xþ 0

1

1

264
375u ð12:23Þ

or

_x1 ¼ �a4x1 ð12:24aÞ

_x2 ¼ �a5x2 þ u ð12:24bÞ

_x3 ¼ �a6x3 þ u ð12:24cÞ
From the state equations in (12.23) or (12.24), we see that state variable x1 is not
controlled by the control u. Thus, the system is said to be uncontrollable.

In summary, a system with distinct eigenvalues and a diagonal system matrix is
controllable if the input coupling matrix B does not have any rows that are zero.

The Controllability Matrix
Tests for controllability that we have so far explored cannot be used for representa-
tions of the system other than the diagonal or parallel form with distinct eigenvalues.
The problem of visualizing controllability gets more complicated if the system has
multiple poles, even though it is represented in parallel form. Further, one cannot
always determine controllability by inspection for systems that are not represented
in parallel form. In other forms, the existence of paths from the input to the state
variables is not a criterion for controllability since the equations are not decoupled.

In order to be able to determine controllability or, alternatively, to design state
feedback for a plant under any representation or choice of state variables, a matrix
can be derived that must have a particular property if all state variables are to be
controlled by the plant input, u. We now state the requirement for controllability,
including the form, property, and name of this matrix.2

An nth-order plant whose state equation is

_x ¼ Axþ Bu ð12:25Þ
is completely controllable3 if the matrix

CM ¼ ½B AB A2B � � � An�1B � ð12:26Þ

is of rank n, where CM is called the controllability matrix.4 As an example, let us
choose a system represented in parallel form with multiple roots.

2 See the work listed in the Bibliography by Ogata (1990: 699–702) for the derivation.
3Completely controllable means that all state variables are controllable. This textbook uses controllable to
mean completely controllable.
4 See Appendix G at www.wiley.com/college/nise for the definition of rank. For single-input systems,
instead of specifying rank n, we can say that CM must be nonsingular, possess an inverse, or have linearly
independent rows and columns.
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Example 12.2

Controllability via the Controllability Matrix

PROBLEM: Given the system of Figure 12.7, represented by a signal-flow diagram,
determine its controllability.

SOLUTION: The state equation for the system written from the signal-flow diagram is

_x ¼ Axþ Bu ¼
�1 1 0

0 �1 0

0 0 �2

264
375 xþ

0

1

1

264
375 u ð12:27Þ

At first it would appear that the system is not controllable because of the zero in the
Bmatrix. Remember, though, that this configuration leads to uncontrollability only
if the poles are real and distinct. In this case, we have multiple poles at �1.

The controllability matrix is

CM ¼ B AB A2B
� � ¼ 0 1 �2

1 �1 1

1 �2 4

264
375 ð12:28Þ

The rank of CM equals the number of linearly independent rows or columns. The
rank can be found by finding the highest-order square submatrix that is non-
singular. The determinant of CM ¼ �1. Since the determinant is not zero, the 3 � 3
matrix is nonsingular, and the rank of CM is 3. We conclude that the system is
controllable since the rank of CM equals the system order. Thus, the poles of the
system can be placed using state-variable feedback design.

Students who are using MATLAB should now run ch12p2 in Appendix B.
You will learn how to use MATLAB to test a system for controlla-
bility. This exercise solves Example 12.2 using MATLAB.

In the previous example, we found that even though an element of the input
coupling matrix was zero, the system was controllable. If we look at Figure 12.7, we
can see why. In this figure, all of the state variables are driven by the input u.

On the other hand, if we disconnect the input at either dx1=dt; dx2=dt, or
dx3=dt, at least one state variable would not be controllable. To see the effect, let us
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FIGURE 12.7 System for Example 12.2
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disconnect the input at dx2=dt. This causes the B matrix to become

B ¼
0

0

1

264
375 ð12:29Þ

We can see that the system is now uncontrollable, since x1 and x2 are no longer controlled
by the input. This conclusion is borne out by the controllability matrix, which is now

CM ¼ B AB A2B
� � ¼ 0 0 0

0 0 0

1 �2 4

264
375 ð12:30Þ

Not only is the determinant of this matrix equal to zero, but so is the determinant of
any 2 � 2 submatrix. Thus, the rank of Eq. (12.30) is 1. The system is uncontrollable
because the rank of CM is 1, which is less than the order, 3, of the system.

Skill-Assessment Exercise 12.2

PROBLEM: Determine whether the system

_x ¼ Axþ Bu ¼
�1 1 2

0 �1 5

0 3 �4

264
375 xþ

2

1

1

264
375 u

is controllable.

ANSWER: Controllable

The complete solution is located at www.wiley.com/college/nise.

In summary, then, pole-placement design through state-variable feedback is
simplified by using the phase-variable form for the plant’s state equations. However,
controllability, the ability for pole-placement design to succeed, can be visualized
best in the parallel form, where the system matrix is diagonal with distinct roots. In
any event, the controllability matrix will always tell the designer whether the
implementation is viable for state-feedback design.

The next section shows how to design state-variable feedback for systems not
represented in phase-variable form. We use the controllability matrix as a tool for
transforming a system to phase-variable form for the design of state-variable feedback.

12.4 Alternative Approaches to Controller Design

Section 12.2 showed how to design state-variable feedback to yield desired closed-
loop poles. We demonstrated this method using systems represented in phase-
variable form and saw how simple it was to calculate the feedback gains. Many
times the physics of the problem requires feedback from state variables that are not
phase variables. For these systems we have some choices for a design methodology.

TryIt 12.2

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 12.2.

A=[-1 1 2
0 -1 5
0 3 -4]

B=[2;1;1]
Cm=ctrb(A,B)
Rank=rank(Cm)
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The first method consists of matching the coefficients of detðsI� ðA� BKÞÞ
with the coefficients of the desired characteristic equation, which is the same method
we used for systems represented in phase variables. This technique, in general, leads
to difficult calculations of the feedback gains, especially for higher-order systems not
represented with phase variables. Let us illustrate this technique with an example.

Example 12.3

Controller Design by Matching Coefficients

PROBLEM: Given a plant, YðsÞ=UðsÞ ¼ 10=½ðsþ 1Þðsþ 2Þ�, design state feedback
for the plant represented in cascade form to yield a 15% overshoot with a settling
time of 0.5 second.

SOLUTION: The signal-flow diagram for the plant in cascade form is shown in
Figure 12.8(a). Figure 12.8(b) shows the system with state feedback added. Writing
the state equations from Figure 12.8(b), we have

_x ¼ �2 1
�k1 �ðk2 þ 1Þ

� �
xþ 0

1

� �
r ð12:31aÞ

y ¼ ½ 10 0 �x ð12:31bÞ
where the characteristic equation is

s2 þ ðk2 þ 3Þsþ ð2k2 þ k1 þ 2Þ ¼ 0 ð12:32Þ
Using the transient response requirements stated in the problem, we obtain the
desired characteristic equation

s2 þ 16sþ 239:5 ¼ 0 ð12:33Þ
Equating the middle coefficients of Eqs. (12.32) and (12.33), we find k2 ¼ 13.
Equating the last coefficients of these equations along with the result for k2 yields
k1 ¼ 211:5.
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FIGURE 12.8 a. Signal-flow
graph in cascade form for
GðsÞ ¼ 10=½ðsþ 1Þðsþ 2Þ�;
b. system with state feedback
added
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The second method consists of transforming the system to phase variables,
designing the feedback gains, and transforming the designed system back to its
original state-variable representation.5 This method requires that we first develop
the transformation between a system and its representation in phase-variable form.

Assume a plant not represented in phase-variable form,

_z ¼ Azþ Bu ð12:34aÞ

y ¼ Cz ð12:34bÞ
whose controllability matrix is

CMz ¼ ½B AB A2B � � �An�1B � ð12:35Þ
Assume that the system can be transformed into the phase-variable (x) representa-
tion with the transformation

z ¼ Px ð12:36Þ

Substituting this transformation into Eqs. (12.34), we get

_x ¼ P�1APxþ P�1Bu ð12:37aÞ

y ¼ CPx ð12:37bÞ
whose controllability matrix is

CMx ¼ ½P�1B ðP�1APÞðP�1BÞ ðP�1APÞ2ðP�1BÞ � � � ðP�1APÞn�1ðP�1BÞ�
¼ ½P�1B ðP�1APÞðP�1BÞ ðP�1APÞðP�1APÞðP�1BÞ � � � ðP�1APÞ

ðP�1APÞðP�1APÞ � � � ðP�1APÞðP�1BÞ�
¼ P�1½B AB A2B � � � An�1B� ð12:38Þ

Substituting Eq. (12.35) into (12.38) and solving for P, we obtain

P ¼ CMzC
�1

Mx ð12:39Þ

Thus, the transformation matrix, P, can be found from the two controllability
matrices.

After transforming the system to phase variables, we design the feedback gains
as in Section 12.2. Hence, including both feedback and input, u ¼ �Kxxþ r, Eqs.
(12.37) becomes

_x ¼ P�1APx� P�1BKxxþ P�1Br

¼ ðP�1AP� P�1BKxÞxþ P�1Br ð12:40aÞ
y ¼ CPx ð12:40bÞ

Since this equation is in phase-variable form, the zeros of this closed-loop system are
determined from the polynomial formed from the elements of CP, as explained in
Section 12.2.

5 See the discussions of Ackermann’s formula in Franklin (1994) and Ogata (1990), listed in the
Bibliography.
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Using x ¼ P�1z, we transform Eqs. (12.40) from phase variables back to the
original representation and get

_z ¼ Az� BKxP
�1zþ Br ¼ ðA� BKxP

�1Þzþ Br ð12:41aÞ
y ¼ Cz ð12:41bÞ

Comparing Eqs. (12.41) with (12.3), the state variable feedback gain, Kz, for the
original system is

Kz ¼ KxP
�1 ð12:42Þ

The transfer function of this closed-loop system is the same as the transfer function
for Eqs. (12.40), since Eqs. (12.40) and (12.41) represent the same system. Thus, the
zeros of the closed-loop transfer function are the same as the zeros of the un-
compensated plant, based upon the development in Section 12.2. Let us demonstrate
with a design example.

Example 12.4

Controller Design by Transformation

PROBLEM: Design a state-variable feedback controller to yield a 20.8% overshoot
and a settling time of 4 seconds for a plant,

GðsÞ ¼ ðsþ 4Þ
ðsþ 1Þðsþ 2Þðsþ 5Þ ð12:43Þ

that is represented in cascade form as shown in Figure 12.9.

SOLUTION: First find the state equations and the controllability matrix. The state
equations written from Figure 12.9 are

_z ¼ Azzþ Bzu ¼
�5 1 0

0 �2 1

0 0 �1

264
375 zþ

0

0

1

264
375 u ð12:44aÞ

y ¼ Czz ¼ ½�1 1 0 �z ð12:44bÞ
from which the controllability matrix is evaluated as

CMz ¼ Bz AzBz A2
zBz

� � ¼ 0 0 1

0 1 �3

1 �1 1

264
375 ð12:45Þ

Since the determinant of CMz is �1, the system is controllable.
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FIGURE 12.9 Signal-flow
graph for plant of Example
12.4
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We now convert the system to phase variables by first finding the character-
istic equation and using this equation to write the phase-variable form. The
characteristic equation, detðsI�AzÞ, is

detðsI�AzÞ ¼ s3 þ 8s2 þ 17sþ 10 ¼ 0 ð12:46Þ
Using the coefficients of Eq. (12.46) and our knowledge of the phase-variable form,
we write the phase-variable representation of the system as

_x ¼ Axxþ Bxu ¼
0 1 0

0 0 1

�10 �17 �8

264
375 xþ

0

0

1

264
375 u ð12:47aÞ

y ¼ ½ 4 1 0 �x ð12:47bÞ
The output equation was written using the coefficients of the numerator of
Eq. (12.43), since the transfer function must be the same for the two representa-
tions. The controllability matrix, CMx, for the phase-variable system is

CMx ¼ Bx AxBx A2
xBx

� � ¼ 0 0 1

0 1 �8

1 �8 47

264
375 ð12:48Þ

Using Eq. (12.39), we can now calculate the transformation matrix between the two
systems as

P ¼ CMzC
�1
Mx ¼

1 0 0

5 1 0

10 7 1

264
375 ð12:49Þ

We now design the controller using the phase-variable representation and then
use Eq. (12.49) to transform the design back to the original representation. For a
20.8% overshoot and a settling time of 4 seconds, a factor of the characteristic
equation of the designed closed-loop system is s2 þ 2sþ 5. Since the closed-loop zero
will be at s ¼ �4, we choose the third closed-loop pole to cancel the closed-loop zero.
Hence, the total characteristic equation of the desired closed-loop system is

DðsÞ ¼ ðsþ 4Þðs2 þ 2sþ 5Þ ¼ s3 þ 6s2 þ 13sþ 20 ¼ 0 ð12:50Þ
The state equations for the phase-variable form with state-variable feedback are

_x ¼ ðAx � BxKxÞx ¼
0 1 0

0 0 1

�ð10 þ k1xÞ �ð17 þ k2xÞ �ð8 þ k3xÞ

264
375x ð12:51aÞ

y ¼ ½ 4 1 0 �x ð12:51bÞ
The characteristic equation for Eqs. (12.51) is

detðsI� ðAx � BxKxÞÞ ¼ s3 þ ð8 þ k3xÞs2 þ ð17 þ k2xÞsþ ð10 þ k1xÞ
¼ 0

ð12:52Þ

Comparing Eq. (12.50) with (12.52), we see that

Kx ¼ ½ k1x k2x k3x � ¼ ½ 10 �4 �2 � ð12:53Þ
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Using Eqs. (12.42) and (12.49), we can transform the controller back to the original
system as

Kz ¼ KxP
�1 ¼ ½�20 10 �2 � ð12:54Þ

The final closed-loop system with state-variable feedback is shown in Figure 12.10,
with the input applied as shown.

Let us now verify our design. The state equations for the designed system
shown in Figure 12.10 with input r are

_z ¼ ðAz � BzKzÞzþ Bzr ¼
�5 1 0

0 �2 1

20 �10 1

264
375zþ 0

0

1

264
375r ð12:55aÞ

y ¼ Czz ¼ ½�1 1 0 �z ð12:55bÞ
Using Eq. (3.73) to find the closed-loop transfer function, we obtain

TðsÞ ¼ ðsþ 4Þ
s3 þ 6s2 þ 13sþ 20

¼ 1

s2 þ 2sþ 5
ð12:56Þ

The requirements for our design have been met.

Students who are using MATLAB should now run ch12p3 in Appendix B.
You will learn how to use MATLAB to design a controller for a plant
not represented in phase-variable form. You will see that MATLAB
does not require transformation to phase-variable form. This
exercise solves Example 12.4 using MATLAB.

Skill-Assessment Exercise 12.3

PROBLEM: Design a linear state-feedback controller to yield 20% overshoot and a
settling time of 2 seconds for a plant,

GðsÞ ¼ ðsþ 6Þ
ðsþ 9Þðsþ 8Þðsþ 7Þ
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FIGURE 12.10 Designed
system with state-variable
feedback for Example 12.4

12.4 Alternative Approaches to Controller Design 681



E1C12 12/07/2010 12:9:30 Page 682

that is represented in state space in cascade form by

_z ¼ Azþ Bu ¼
�7 1 0

0 �8 1

0 0 �9

264
375 zþ

0

0

1

264
375 u

y ¼ Cz ¼ �1 1 0½ �z

ANSWER: Kz ¼ ½�40:23 62:24 �14 �
The complete solution is located at www.wiley.com/college/nise.

In this section, we saw how to design state-variable feedback for plants not
represented in phase-variable form. Using controllability matrices, we were able to
transform a plant to phase-variable form, design the controller, and finally transform the
controller design back to the plant’s original representation. The design of the controller
relies on the availability of the states for feedback. In the next section, we discuss the
design of state-variable feedback when some or all of the states are not available.

12.5 Observer Design

Controller design relies upon access to the state variables for feedback through
adjustable gains. This access can be provided by hardware. For example, gyros can
measure position and velocity on a space vehicle. Sometimes it is impractical to use this
hardware for reasons of cost, accuracy, or availability. For example, in powered flight of
space vehicles, inertial measuring units can be used to calculate the acceleration.
However, their alignment deteriorates with time; thus, other means of measuring
acceleration may be desirable (Rockwell International, 1984). In other applications,
some of the state variables may not be available at all, or it is too costly to measure them
or send them to the controller. If the state variables are not available because of system
configuration or cost, it is possible to estimate the states. Estimated states, rather than
actual states, are then fed to the controller. One scheme is shown in Figure 12.11(a).
An observer, sometimes called an estimator, is used to calculate state variables that are
not accessible from the plant. Here the observer is a model of the plant.

Let us look at the disadvantages of such a configuration. Assume a plant,

_x ¼ Axþ Bu ð12:57aÞ
y ¼ Cx ð12:57bÞ

and an observer,

_̂x ¼ Ax̂þ Bu ð12:58aÞ
ŷ ¼ Cx̂ ð12:58bÞ

Subtracting Eqs. (12.58) from (12.57), we obtain

_x� _̂x ¼ Aðx� x̂Þ ð12:59aÞ
y� ŷ ¼ Cðx� x̂Þ ð12:59bÞ
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Thus, the dynamics of the difference between the actual and estimated states is
unforced, and if the plant is stable, this difference, due to differences in initial state
vectors, approaches zero. However, the speed of convergence between the actual
state and the estimated state is the same as the transient response of the plant since
the characteristic equation for Eq. (12.59a) is the same as that for Eq. (12.57a).
Since the convergence is too slow, we seek a way to speed up the observer and
make its response time much faster than that of the controlled closed-loop system, so
that, effectively, the controller will receive the estimated states instantaneously.

To increase the speed of convergence between the actual and estimated states,
we use feedback, shown conceptually in Figure 12.11(b) and in more detail in
Figure 12.11(c). The error between the outputs of the plant and the observer is fed
back to the derivatives of the observer’s states. The system corrects to drive this error
to zero. With feedback we can design a desired transient response into the observer
that is much quicker than that of the plant or controlled closed-loop system.

When we implemented the controller, we found that the phase-variable or
controller canonical form yielded an easy solution for the controller gains. In
designing an observer, it is the observer canonical form that yields the easy solution
for the observer gains. Figure 12.12(a) shows an example of a third-order plant
represented in observer canonical form. In Figure 12.12(b), the plant is configured as
an observer with the addition of feedback, as previously described.

The design of the observer is separate from the design of the controller. Similar
to the design of the controller vector, K, the design of the observer consists of
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back arrangement to reduce
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evaluating the constant vector, L, so that the transient response of the observer is
faster than the response of the controlled loop in order to yield a rapidly updated
estimate of the state vector. We now derive the design methodology.

We will first find the state equations for the error between the actual state
vector and the estimated state vector, ðx� x̂Þ. Then we will find the characteristic
equation for the error system and evaluate the required L to meet a rapid transient
response for the observer.

Writing the state equations of the observer from Figure 12.11(c), we have

_̂x ¼ Ax̂þ Buþ Lðy� ŷÞ ð12:60aÞ
ŷ ¼ Cx̂ ð12:60bÞ

But the state equations for the plant are

_x ¼ Axþ Bu ð12:61aÞ
y ¼ Cx ð12:61bÞ

FIGURE 12.12 Third-order observer
in observer canonical form:
a. before the addition of
feedback; b. after the addition
of feedback
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Subtracting Eqs. (12.60) from (12.61), we obtain

ð _x� _̂xÞ ¼ Aðx� x̂Þ � Lðy� ŷÞ ð12:62aÞ
ðy� ŷÞ ¼ Cðx� x̂Þ ð12:62bÞ

where x� x̂ is the error between the actual state vector and the estimated state
vector, and y� ŷ is the error between the actual output and the estimated out-put.

Substituting the output equation into the state equation, we obtain the state
equation for the error between the estimated state vector and the actual state vector:

ð _x� _̂xÞ ¼ ðA� LCÞðx� x̂Þ ð12:63aÞ
ðy� ŷÞ ¼ Cðx� x̂Þ ð12:63bÞ

Letting ex ¼ ðx� x̂Þ, we have

_ex ¼ ðA� LCÞex ð12:64aÞ

y� ŷ ¼ Cex ð12:64bÞ

Equation (12.64a) is unforced. If the eigenvalues are all negative, the estimated
state vector error, ex, will decay to zero. The design then consists of solving for the
values ofL to yield a desired characteristic equation or response for Eqs. (12.64). The
characteristic equation is found from Eqs. (12.64) to be

det½lI� ðA� LCÞ� ¼ 0 ð12:65Þ

Now we select the eigenvalues of the observer to yield stability and a desired
transient response that is faster than the controlled closed-loop response. These
eigenvalues determine a characteristic equation that we set equal to Eq. (12.65) to
solve for L.

Let us demonstrate the procedure for an nth-order plant represented in
observer canonical form. We first evaluate A� LC. The form of A, L, and C can
be derived by extrapolating the form of these matrices from a third-order plant,
which you can derive from Figure 12.12. Thus,

A� LC ¼

�an�1 1 0 0 � � � 0

�an�2 0 1 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

�a1 0 0 0 � � � 1

�a0 0 0 0 � � � 0

266666664

377777775
�

l1

l2

..

.

ln�1

ln

266666664

377777775
1 0 0 0 � � � 0½ �

¼

�ðan�1 þ l1Þ 1 0 0 � � � 0

�ðan�2 þ l2Þ 0 1 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

�ða1 þ ln�1Þ 0 0 0 � � � 1

�ða0 þ lnÞ 0 0 0 � � � 0

266666664

377777775
ð12:66Þ

12.5 Observer Design 685



E1C12 12/07/2010 12:9:31 Page 686

The characteristic equation for A� LC is

sn þ ðan�1 þ l1Þsn�1 þ ðan�2 þ l2Þsn�2 þ � � � þ ða1 þ ln�1Þs
þ ða0 þ lnÞ ¼ 0 ð12:67Þ

Notice the relationship between Eq. (12.67) and the characteristic equation,
detðsI�AÞ ¼ 0, for the plant, which is

sn þ an�1s
n�1 þ an�2s

n�2 þ � � � þ a1sþ a0 ¼ 0 ð12:68Þ
Thus, if desired, Eq. (12.67) can be written by inspection if the plant is represented in
observer canonical form. We now equate Eq. (12.67) with the desired closed-loop
observer characteristic equation, which is chosen on the basis of a desired transient
response. Assume the desired characteristic equation is

sn þ dn�1s
n�1 þ dn�2s

n�2 þ � � � þ d1sþ d0 ¼ 0 ð12:69Þ
We can now solve for the li’s by equating the coefficients of Eqs. (12.67) and (12.69):

li ¼ dn�i � an�i i ¼ 1; 2; . . . ; n ð12:70Þ
Let us demonstrate the design of an observer using the observer canonical form. In
subsequent sections we will show how to design the observer for other than observer
canonical form.

Example 12.5

Observer Design for Observer Canonical Form

PROBLEM: Design an observer for the plant

GðsÞ ¼ ðsþ 4Þ
ðsþ 1Þðsþ 2Þðsþ 5Þ ¼

sþ 4

s3 þ 8s2 þ 17sþ 10
ð12:71Þ

which is represented in observer canonical form. The observer will respond 10 times
faster than the controlled loop designed in Example 12.4.

SOLUTION:

1. First represent the estimated plant in observer canonical form. The result is
shown in Figure 12.13(a).

2. Now form the difference between the plant’s actual output, y, and the observer’s
estimated output, ŷ, and add the feedback paths from this difference to the
derivative of each state variable. The result is shown in Figure 12.13(b).

3. Next find the characteristic polynomial. The state equations for the estimated
plant shown in Figure 12.13(a) are

_̂x ¼ Ax̂þ Bu ¼
�8 1 0

�17 0 1

�10 0 0

264
375x̂þ 0

1

4

264
375u ð12:72aÞ

ŷ ¼ Cx̂ ¼ ½ 1 0 0 �x̂ ð12:72bÞ

686 Chapter 12 Design via State Space



E1C12 12/07/2010 12:9:31 Page 687

From Eqs. (12.64) and (12.66), the observer error is

_ex ¼ ðA� LCÞex ¼
�ð8 þ l1Þ 1 0

�ð17 þ l2Þ 0 1

�ð10 þ l3Þ 0 0

264
375ex ð12:73Þ

Using Eq. (12.65), we obtain the characteristic polynomial

s3 þ ð8 þ l1Þs2 þ ð17 þ l2Þsþ ð10 þ l3Þ ð12:74Þ

4. Now evaluate the desired polynomial, set the coefficients equal to those of
Eq. (12.74), and solve for the gains, li. From Eq. (12.50), the closed-loop
controlled system has dominant second-order poles at �1 � j2. To make our
observer 10 times faster, we design the observer poles to be at �10 � j20. We
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FIGURE 12.13 a. Signal-flow graph of a system using observer canonical form variables; b. additional feedback to
create observer
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select the third pole to be 10 times the real part of the dominant second-order
poles, or �100. Hence, the desired characteristic polynomial is

ðsþ 100Þðs2 þ 20sþ 500Þ ¼ s3 þ 120s2 þ 2500sþ 50;000 ð12:75Þ

Equating Eqs. (12.74) and (12.75), we find l1 ¼ 112; l2 ¼ 2483, and l3 ¼ 49;990.
A simulation of the observer with an input of rðtÞ ¼ 100t is shown in

Figure 12.14. The initial conditions of the plant were all zero, and the initial
condition of x̂1 was 0.5.

Since the dominant pole of the observer is �10 � j20, the expected settling
time should be about 0.4 second. It is interesting to note the slower response in
Figure 12.14(b), where the observer gains are disconnected, and the observer is
simply a copy of the plant with a different initial condition.

Students who are using MATLAB should now run ch12p4 in Appendix B.
You will learn how to use MATLAB to design an observer using pole
placement. This exercise solves Example 12.5 using MATLAB.

FIGURE 12.14 Simulation showing
response of observer: a. closed-loop;
b. open-loop with observer gains
disconnected
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Skill-Assessment Exercise 12.4

PROBLEM: Design an observer for the plant

GðsÞ ¼ ðsþ 6Þ
ðsþ 7Þðsþ 8Þðsþ 9Þ

whose estimated plant is represented in state space in observer canonical form as

_̂x ¼ Ax̂þ Bu ¼
�24 1 0

�191 0 1

�504 0 0

264
375x̂þ 0

1

6

264
375u

ŷ ¼ Cx̂ ¼ 1 0 0½ �x̂
The observer will respond 10 times faster than the controlled loop designed in Skill-
Assessment Exercise 12.3.

ANSWER: L ¼ ½ 216 9730 383; 696 �T, where T signifies vector transpose

The complete solution is located at www.wiley.com/college/nise.

In this section, we designed an observer in observer canonical form that uses
the output of a system to estimate the state variables. In the next section, we examine
the conditions under which an observer cannot be designed.

12.6 Observability

Recall that the ability to control all of the state variables is a requirement for the
design of a controller. State-variable feedback gains cannot be designed if any state
variable is uncontrollable. Uncontrollability can be viewed best with diagonalized
systems. The signal-flow graph showed clearly that the uncontrollable state variable
was not connected to the control signal of the system.

A similar concept governs our ability to create a design for an observer.
Specifically, we are using the output of a system to deduce the state variables. If any
state variable has no effect upon the output, then we cannot evaluate this state
variable by observing the output.

The ability to observe a state variable from the output is best seen from the
diagonalized system. Figure 12.15(a) shows a system where each state variable can
be observed at the output since each is connected to the output. Figure 12.15(b) is
an example of a system where all state variables cannot be observed at the output.
Here x1 is not connected to the output and could not be estimated from a
measurement of the output. We now make the following definition based upon
the previous discussion:

If the initial-state vector, x(t0), can be found from u(t) and y(t) measured over a
finite interval of time from t0, the system is said to be observable; otherwise the
system is said to be unobservable.

TryIt 12.3

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 12.4.

A=[-24 1 0
-191 0 1
-504 0 0]

C=[l 0 0]
pos=20
Ts=2
z=(-log(pos/100))/...
(sqrt(pi^2 +...
log(pos/100)^2));
wn=4/(z*Ts);
r=roots([1,2*z*wn,...
wn^2]);
poles=10*[r’ 10*...
real(r(1))]
l=acker(A’,C’,poles)’
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Simply stated, observability is the ability to deduce the state variables from a
knowledge of the input, u(t), and the output, y(t). Pole placement for an observer is a
viable design technique only for systems that are observable. This section shows how
to determine, a priori, whether or not pole placement is a viable design technique for
an observer.

Observability by Inspection
We can also explore observability from the output equation of a diagonalized
system. The output equation for the diagonalized system of Figure 12.15(a) is

y ¼ Cx ¼ ½ 1 1 1 �x ð12:76Þ
On the other hand, the output equation for the unobservable system of Figure 12.15(b) is

y ¼ Cx ¼ ½ 0 1 1 �x ð12:77Þ
Notice that the first column of Eq. (12.77) is zero. For systems represented in parallel
form with distinct eigenvalues, if any column of the output coupling matrix is zero, the
diagonal system is not observable.

FIGURE 12.15 Comparison of
a. observable, and b. unobservable
systems
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The Observability Matrix
Again, as for controllability, systems represented in other than diagonalized form
cannot be reliably evaluated for observability by inspection. In order to determine
observability for systems under any representation or choice of state variables, a
matrix can be derived that must have a particular property if all state variables are to
be observed at the output. We now state the requirements for observability,
including the form, property, and name of this matrix.

An nth-order plant whose state and output equations are, respectively,

_x ¼ Axþ Bu ð12:78aÞ
y ¼ Cx ð12:78bÞ

is completely observable6 if the matrix

OM ¼

C

CA

..

.

CAn�1

266664
377775 ð12:79Þ

is of rank n, where OM is called the observability matrix.7

The following two examples illustrate the use of the observability matrix.

Example 12.6

Observability via the Observability Matrix

PROBLEM: Determine if the system of Figure 12.16 is observable.

SOLUTION: The state and output equations for the system are

_x ¼ Axþ Bu ¼
0 1 0

0 0 1

�4 �3 �2

264
375xþ 0

0

1

264
375u ð12:80aÞ

y ¼ Cx ¼ ½ 0 5 1 �x ð12:80bÞ

6Completely observable means that all state variables are observable. This textbook uses observable to
mean completely observable.
7 See Ogata (1990: 706–708) for a derivation.

x3

1
u  

x1

y
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–3
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5

1

1
s

1
s

1
s

FIGURE 12.16 System of Example 12.6
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Thus, the observability matrix, OM, is

OM ¼
C

CA

CA2

264
375 ¼

0 5 1

�4 �3 3

�12 �13 �9

264
375 ð12:81Þ

Since the determinant of OM equals �344, OM is of full rank equal to 3. The
system is thus observable.

You might have been misled and concluded by inspection that the system is
unobservable because the state variable x1 is not fed directly to the output.
Remember that conclusions about observability by inspection are valid only for
diagonalized systems that have distinct eigenvalues.

Students who are using MATLAB should now run ch12p5 in Appendix B.
You will learn how to use MATLAB to test a system for observabil-
ity. This exercise solves Example 12.6 using MATLAB.

Example 12.7

Unobservability via the Observability Matrix

PROBLEM: Determine whether the system of Figure 12.17 is observable.

SOLUTION: The state and output equations for the system are

_x ¼ Axþ Bu ¼ 0 1

�5 �21=4

� �
xþ 0

1

� �
u ð12:82aÞ

y ¼ Cx ¼ ½ 5 4 �x ð12:82bÞ
The observability matrix, OM, for this system is

OM ¼ C

CA

� �
¼ 5 4

�20 �16

� �
ð12:83Þ

1

x2

u
x1

4

y

–5

– 21
4

5
1
s

1
s

FIGURE 12.17 System of Example 12.7

692 Chapter 12 Design via State Space



E1C12 12/07/2010 12:9:32 Page 693

The determinant for this observability matrix equals 0. Thus, the observability
matrix does not have full rank, and the system is not observable.

Again, you might conclude by inspection that the system is observable
because all states feed the output. Remember that observability by inspection
is valid only for a diagonalized representation of a system with distinct
eigenvalues.

Skill-Assessment Exercise 12.5

PROBLEM: Determine whether the system

_x ¼ Axþ Bu ¼
�2 �1 �3

0 �2 1

�7 �8 �9

264
375xþ 2

1

2

264
375u

y ¼ Cx ¼ 4 6 8½ �x
is observable.

ANSWER: Observable

The complete solution is located at www.wiley.com/college/nise.

Now that we have discussed observability and the observability matrix, we are
ready to talk about the design of an observer for a plant not represented in observer
canonical form.

12.7 Alternative Approaches
to Observer Design

Earlier in the chapter, we discussed how to design controllers for systems not
represented in phase-variable form. One method is to match the coefficients of
det½sI� ðA� BKÞ� with the coefficients of the desired characteristic polynomial.
This method can yield difficult calculations for higher-order systems. Another
method is to transform the plant to phase-variable form, design the controller,
and transfer the design back to its original representation. The transformations were
derived from the controllability matrix.

In this section, we use a similar idea for the design of observers not re-
presented in observer canonical form. One method is to match the coefficients of
det½sI� ðA� LCÞ� with the coefficients of the desired characteristic polynomial.
Again, this method can yield difficult calculations for higher-order systems.
Another method is first to transform the plant to observer canonical form so that
the design equations are simple, then perform the design in observer canonical
form, and finally transform the design back to the original representation.

Let us pursue this second method. First we will derive the transformation
between a system representation and its representation in observer canonical form.

TryIt 12.4

Use MATLAB, the Control
System Toolbox, and the
following statements to solve
Skill-Assessment Exercise 12.5.

A = [-2 -1 -3
0 -2 1

-7 -8 -9]
C=[4 6 8]
Om=obsv(A,C)
Rank=rank(Om)
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Assume a plant not represented in observer canonical form,

_z ¼ Azþ Bu ð12:84aÞ
y ¼ Cz ð12:84bÞ

whose observability matrix is

OMz ¼

C

CA

CA2

..

.

CAn�2

CAn�1

26666666664

37777777775
ð12:85Þ

Now assume that the system can be transformed to the observer canonical
form, x, with the transformation

z ¼ Px ð12:86Þ
Substituting Eq. (12.86) into Eqs. (12.84) and premultiplying the state equation by
P�1, we find that the state equations in observer canonical form are

_x ¼ P�1APxþ P�1Bu ð12:87aÞ
y ¼ CPx ð12:87bÞ

whose observability matrix, OMx, is

OMx ¼

CP

CPðP�1APÞ
CPðP�1APÞðP�1APÞ

..

.

CPðP�1APÞðP�1APÞ � � � ðP�1APÞ

266666664

377777775
¼

C

CA

CA2

..

.

CAn�1

26666664

37777775P ð12:88Þ

Substituting Eq. (12.85) into (12.88) and solving for P, we obtain

P ¼ O �1
Mz OMx ð12:89Þ

Thus, the transformation, P, can be found from the two observability matrices.
After transforming the plant to observer canonical form, we design the feed-

back gains, Lx, as in Section 12.5. Using the matrices from Eqs. (12.87) and the form
suggested by Eqs. (12.64), we have

_ex ¼ ðP�1AP� LxCPÞex ð12:90aÞ
y� ŷ ¼ CPex ð12:90bÞ

Since x ¼ P�1z, and x̂ ¼ P�1 ẑ, then ex ¼ x� x̂ ¼ P�1ez. Substituting ex ¼ P�1ez into
Eqs. (12.90) transforms Eqs. (12.90) back to the original representation. The result is

_ez ¼ ðA� PLxCÞez ð12:91aÞ
y� ŷ ¼ Cez ð12:91bÞ
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Comparing Eq. (12.91a) to (12.64a), we see that the observer gain vector is

Lz ¼ LPx ð12:92Þ
We now demonstrate the design of an observer for a plant not represented in

observer canonical form. The first example uses transformations to and from observer
canonical form. The second example matches coefficients without the transformation.
This method, however, can become difficult if the system order is high.

Example 12.8

Observer Design by Transformation

PROBLEM: Design an observer for the plant

GðsÞ ¼ 1

ðsþ 1Þðsþ 2Þðsþ 5Þ ð12:93Þ

represented in cascade form. The closed-loop performance of the observer is
governed by the characteristic polynomial used in Example 12.5: s3 þ 120s2þ
2500sþ 50;000.

SOLUTION: First represent the plant in its original cascade form.

_z ¼ Azþ Bu ¼
�5 1 0

0 �2 1

0 0 �1

264
375 zþ

0

0

1

264
375 u ð12:94aÞ

y ¼ Cz ¼ ½ 1 0 0 �z ð12:94bÞ
The observability matrix, OMz, is

OMz ¼
C

CA

CA2

264
375 ¼

1 0 0

�5 1 0

25 �7 1

264
375 ð12:95Þ

whose determinant equals 1. Hence, the plant is observable.
The characteristic equation for the plant is

detðsI�AÞ ¼ s3 þ 8s2 þ 17sþ 10 ¼ 0 ð12:96Þ
We can use the coefficients of this characteristic polynomial to form the observer
canonical form:

_x ¼ Axxþ Bxu ð12:97aÞ
y ¼ Cxx ð12:97bÞ

where

Ax ¼
�8 1 0

�17 0 1

�10 0 0

264
375; Cx ¼ 1 0 0½ � ð12:98Þ
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The observability matrix for the observer canonical form is

OMx ¼
Cx

CxAx

CxA
2
x

264
375 ¼

1 0 0

�8 1 0

47 �8 1

264
375 ð12:99Þ

We now design the observer for the observer canonical form. First form
ðAx � LxCxÞ,

Ax � LxCx ¼
�8 1 0

�17 0 1

�10 0 0

264
375�

l1

l2

l3

264
375 1 0 0½ � ¼

�ð8 þ l1Þ 1 0

�ð17 þ l2Þ 0 1

�ð10 þ l3Þ 0 0

264
375

ð12:100Þ

whose characteristic polynomial is

det½sI� ðAx � LxCxÞ� ¼ s3 þ ð8 þ l1Þs2 þ ð17 þ l2Þsþ ð10 þ l3Þ ð12:101Þ

Equating this polynomial to the desired closed-loop observer characteristic
equation, s3 þ 120s2 þ 2500sþ 50;000, we find

Lx ¼
112

2483

49;990

264
375 ð12:102Þ

Now transform the design back to the original representation. Using
Eq. (12.89), the transformation matrix is

P ¼ O �1
Mz OMx ¼

1 0 0

�3 1 0

1 �1 1

264
375 ð12:103Þ

Transforming Lx to the original representation, we obtain

Lz ¼ PLx ¼
112

2147

47;619

264
375 ð12:104Þ

The final configuration is shown in Figure 12.18.
A simulation of the observer is shown in Figure 12.19(a). To demonstrate the

effect of the observer design, Figure 12.19(b) shows the reduced speed if the
observer is simply a copy of the plant and all observer feedback paths are
disconnected.

Students who are using MATLAB should now run ch12p6 in Appendix B.
You will learn how to use MATLAB to design an observer for a plant
not represented in observer canonical form. You will see that
MATLAB does not require transformation to observer canonical
form. This exercise solves Example 12.8 using MATLAB.
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Example 12.9

Observer Design by Matching Coefficients

PROBLEM: A time-scaled model for the body’s blood glucose level is shown in Eq.
(12.105). The output is the deviation in glucose concentration from its mean value
in mg/100 ml, and the input is the intravenous glucose injection rate in g/kg/hr
(Milhorn, 1966).

GðsÞ ¼ 407ðsþ 0:916Þ
ðsþ 1:27Þðsþ 2:69Þ ð12:105Þ

Design an observer for the phase variables with a transient response described by
z ¼ 0:7 and vn ¼ 100.

SOLUTION: We can first model the plant in phase-variable form. The result is
shown in Figure 12.20(a).

For the plant,

A ¼ 0 1

�3:42 �3:96

� �
; C ¼ 372:81 407½ � ð12:106Þ

FIGURE 12.20 a. Plant;
b. designed observer for
Example 12.9
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Calculation of the observability matrix, OM ¼ ½C CA �T , shows that the plant is
observable and we can proceed with the design. Next find the characteristic
equation of the observer. First we have

A� LC ¼ 0 1

�3:42 �3:96

" #
� l1

l2

" #
372:81 407½ �

¼ �372:81l1 ð1 � 407l1Þ
�ð3:42 þ 372:81l2Þ �ð3:96 þ 407l2Þ

" #
ð12:107Þ

Now evaluate det½lI� ðA� LCÞ� ¼ 0 in order to obtain the characteristic equation:

det lI� ðA� LCÞ½ � ¼ det
ðlþ 372:81l1Þ �ð1 � 407l1Þ

ð3:42 þ 372:81l2Þ ðlþ 3:96 þ 407l2Þ

� �
¼ l2 þ ð3:96 þ 372:81l1 þ 407l2Þlþ ð3:42 þ 84:39l1 þ 372:81l2Þ
¼ 0

ð12:108Þ
From the problem statement, we want z ¼ 0:7 and vn ¼ 100. Thus,

l2 þ 140lþ 10;000 ¼ 0 ð12:109Þ
Comparing the coefficients of Eqs. (12.108) and (12.109), we find the values l1 and
l2 to be �38.397 and 35.506, respectively. Using Eq. (12.60), where

A ¼ 0 1

�3:42 �3:96

" #
; B ¼ 0

1

" #
; C ¼ 372:81 407½ �;

L ¼ �38:397

35:506

" #
ð12:110Þ

the observer is implemented and shown in Figure 12.20(b).

Skill-Assessment Exercise 12.6

PROBLEM: Design an observer for the plant

GðsÞ ¼ 1

ðsþ 7Þðsþ 8Þðsþ 9Þ
whose estimated plant is represented in state space in cascade form as

_̂z ¼ Aẑþ Bu ¼
�7 1 0

0 �8 1

0 0 �9

264
375ẑþ 0

0

1

264
375u

ŷ ¼ Cx̂ ¼ 1 0 0½ �ẑ
The closed-loop step response of the observer is to have 10% overshoot with a 0.1
second settling time.
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ANSWER:

Lz ¼
456

28;640

1:54 � 106

264
375

The complete solution is located at www.wiley.com/college/nise.

Now that we have explored transient response design using state-space
techniques, let us turn to the design of steady-state error characteristics.

12.8 Steady-State Error Design via Integral Control

In Section 7.8, we discussed how to analyze systems represented in state space for
steady-state error. In this section, we discuss how to design systems represented in
state space for steady-state error.

Consider Figure 12.21. The previously designed controller discussed in Section
12.2 is shown inside the dashed box. A feedback path from the output has been
added to form the error, e, which is fed forward to the controlled plant via an
integrator. The integrator increases the system type and reduces the previous finite
error to zero. We will now derive the form of the state equations for the system of
Figure 12.21 and then use that form to design a controller. Thus, we will be able to
design a system for zero steady-state error for a step input as well as design the
desired transient response.

An additional state variable, xN, has been added at the output of the leftmost
integrator. The error is the derivative of this variable. Now, from Figure 12.21,

_xN ¼ r � Cx ð12:111Þ
Writing the state equations from Figure 12.21, we have

_x ¼ Axþ Bu ð12:112aÞ
_xN ¼ �Cxþ r ð12:112bÞ
y ¼ Cx ð12:112cÞ

FIGURE 12.21 Integral control
for steady-state error design
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Eqs. (12.112) can be written as augmented vectors and matrices. Hence,

_x

_xN

� �
¼ A 0

�C 0

� �
x

xN

� �
þ B

0

� �
uþ 0

1

� �
r ð12:113aÞ

y ¼ C 0½ � x
xN

� �
ð12:113bÞ

But

u ¼ �KxþKexN ¼ � K �Ke½ � x
xN

� �
ð12:114Þ

Substituting Eq. (12.114) into (12.113a) and simplifying, we obtain

_x
_xN

� �
¼ ðA� BKÞ BKe

�C 0

� �
x
xN

� �
þ 0

1

� �
r ð12:115aÞ

y ¼ C 0½ � x
xN

� �
ð12:115bÞ

Thus, the system type has been increased, and we can use the characteristic equation
associated with Eq. (12.115a) to design K and Ke to yield the desired transient
response. Realize, we now have an additional pole to place. The effect on the
transient response of any closed-loop zeros in the final design must also be taken into
consideration. One possible assumption is that the closed-loop zeros will be the same
as those of the open-loop plant. This assumption, which of course must be checked,
suggests placing higher-order poles at the closed-loop zero locations. Let us dem-
onstrate with an example.

Example 12.10

Design of Integral Control

PROBLEM: Consider the plant of Eqs. (12.116):

_x ¼ 0 1

�3 �5

� �
xþ 0

1

� �
u ð12:116aÞ

y ¼ ½ 1 0 �x ð12:116bÞ
a. Design a controller without integral control to yield a 10% overshoot and a

settling time of 0.5 second. Evaluate the steady-state error for a unit step
input.

b. Repeat the design of (a) using integral control. Evaluate the steady-state
error for a unit step input.

SOLUTION:

a. Using the requirements for settling time and percent overshoot, we find that
the desired characteristic polynomial is

s2 þ 16sþ 183:1 ð12:117Þ

12.8 Steady-State Error Design via Integral Control 701



E1C12 12/07/2010 12:9:34 Page 702

Since the plant is represented in phase-variable form, the characteristic polyno-
mial for the controlled plant with state-variable feedback is

s2 þ ð5 þ k2Þsþ ð3 þ k1Þ ð12:118Þ
Equating the coefficients of Eqs. (12.117) and (12.118), we have

K ¼ ½ k1 k2 � ¼ ½ 180:1 11 � ð12:119Þ
From Eqs. (12.3), the controlled plant with state-variable feedback represented in
phase-variable form is

_x ¼ ðA� BKÞxþ Br ¼ 0 1

�183:1 �16

� �
xþ 0

1

� �
r ð12:120aÞ

y ¼ Cx ¼ ½ 1 0 �x ð12:120bÞ
Using Eq. (7.96), we find that the steady-state error for a step input is

eð1Þ ¼ 1 þ CðA� BKÞ�1B

¼ 1 þ 1 0½ � 0 1

�183:1 �16

� ��1 0

1

� �
¼ 0:995

ð12:121Þ

b. We now use Eqs. (12.115) to represent the integral-controlled plant as
follows:

_x1

_x2

_xN

264
375¼

�
0 1

�3 �5

� �
� 0

1

� �
k1 k2½ �

�
0

1

� �
Ke

� 1 0½ � 0

264
375 x1

x2

xN

264
375þ

0

0

1

264
375r

¼
0 1 0

�ð3 þ k1Þ �ð5 þ k2Þ Ke

�1 0 0

264
375 x1

x2

xN

264
375þ

0

0

1

264
375r ð12:122aÞ

y ¼ 1 0 0½ �
x1

x2

xN

264
375 ð12:122bÞ

Using Eq. (3.73) and the plant of Eqs. (12.116), we find that the transfer
function of the plant is GðsÞ ¼ 1=ðs2 þ 5sþ 3Þ. The desired characteristic polyno-
mial for the closed-loop integral-controlled system is shown in Eq. (12.117). Since
the plant has no zeros, we assume no zeros for the closed-loop system and augment
Eq. (12.117) with a third pole, ðsþ 100Þ, which has a real part greater than five
times that of the desired dominant second-order poles. The desired third-order
closed-loop system characteristic polynomial is

ðsþ 100Þðs2 þ 16sþ 183:1Þ ¼ s3 þ 116s2 þ 1783:1sþ 18,310 ð12:123Þ
The characteristic polynomial for the system of Eqs. (12.112) is

s3 þ ð5 þ k2Þs2 þ ð3 þ k1ÞsþKe ð12:124Þ
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Matching coefficients from Eqs. (12.123) and (12.124), we obtain

k1 ¼ 1780:1 ð12:125aÞ
k2 ¼ 111 ð12:125bÞ
ke ¼ 18,310 ð12:125cÞ

Substituting these values into Eqs. (12.122) yields this closed-loop integral-
controlled system:

_x1

_x2

_xN

264
375 ¼

0 1 0

�1783:1 �116 18;310

�1 0 0

264
375 x1

x2

xN

264
375þ

0

0

1

264
375r ð12:126aÞ

y ¼ 1 0 0½ �
x1

x2

xN

24 35 ð12:126bÞ

In order to check our assumption for the zero, we now apply Eq. (3.73) to
Eqs. (12.126) and find the closed-loop transfer function to be

TðsÞ ¼ 18,310

s3 þ 116s2 þ 1783:1sþ 18,310
ð12:127Þ

Since the transfer function matches our design, we have the desired transient
response.

Now let us find the steady-state error for a unit step input. Applying
Eq. (7.96) to Eqs. (12.126), we obtain

eð1Þ ¼ 1 þ 1 0 0½ �
0 1 0

�1783:1 �116 18;310

�1 0 0

264
375
�1 0

0

1

264
375 ¼ 0 ð12:128Þ

Thus, the system behaves like a Type 1 system.

Skill-Assessment Exercise 12.7

PROBLEM: Design an integral controller for the plant

_x ¼ 0 1

�7 �9

" #
xþ 0

1

" #
u

y ¼ 4 1½ �x
to yield a step response with 10% overshoot, a peak time of 2 seconds, and zero
steady-state error.

ANSWER: K ¼ ½ 2:21 �2:7 �; Ke ¼ 3:79

The complete solution is located at www.wiley.com/college/nise.
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Now that we have designed controllers and observers for transient response
and steady-state error, we summarize the chapter with a case study demonstrating
the design process.

Case Study

Antenna Control: Design of Controller and Observer

In this case study, we use our ongoing antenna azimuth position control system to
demonstrate the combined design of a controller and an observer. We will assume
that the states are not available and must be estimated from the output. The block
diagram of the original system is shown on the front endpapers, Configuration 1.
Arbitrarily setting the preamplifier gain to 200 and removing the existing feedback,
the forward transfer function is simplified to that shown in Figure 12.22.

The case study will specify a transient response for the system and a faster
transient response for the observer. The final design configuration will consist of
the plant, the observer, and the controller, as shown conceptually in Figure 12.23.
The design of the observer and the controller will be separate.

C

A

x x
∫

r = 0 +

+
B

+

u

B

Plant

A

x x
∫

Observer

+ +

–K

C
y +

ye

Controller

+

+

–ˆu yˆ

L

ˆ

FIGURE 12.23 Conceptual state-space design configuration, showing plant, observer, and
controller

1325
s(s + 1.71)(s + 100)

U(s) = E(s) Y(s) =   o(s)θ

FIGURE 12.22 Simplified block diagram of antenna control system shown on the front
endpapers (Configuration 1) with K ¼ 200
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PROBLEM: Using the simplified block diagram of the plant for the antenna
azimuth position control system shown in Figure 12.22, design a controller to yield
a 10% overshoot and a settling time of 1 second. Place the third pole 10 times as
far from the imaginary axis as the second-order dominant pair.

Assume that the state variables of the plant are not accessible and design an
observer to estimate the states. The desired transient response for the observer is a
10% overshoot and a natural frequency 10 times as great as the system response
above. As in the case of the controller, place the third pole 10 times as far from the
imaginary axis as the observer’s dominant second-order pair.

SOLUTION: Controller Design: We first design the controller by finding the desired
characteristic equation. A 10% overshoot and a settling time of 1 second yield
z ¼ 0:591 and vn ¼ 6:77. Thus, the characteristic equation for the dominant poles is
s2 þ 8sþ 45:8 ¼ 0, where the dominant poles are located at �4 � j5:46. The third
pole will be 10 times as far from the imaginary axis, or at �40. Hence, the desired
characteristic equation for the closed-loop system is

ðs2 þ 8sþ 45:8Þðsþ 40Þ ¼ s3 þ 48s2 þ 365:8sþ 1832 ¼ 0 ð12:129Þ
Next we find the actual characteristic equation of the closed-loop system. The

first step is to model the closed-loop system in state space and then find its
characteristic equation. From Figure 12.22, the transfer function of the plant is

GðsÞ ¼ 1325

sðsþ 1:71Þðsþ 100Þ ¼
1325

sðs2 þ 101:71sþ 171Þ ð12:130Þ

Using phase variables, this transfer function is converted to the signal-flow graph
shown in Figure 12.24, and the state equations are written as follows:

_x ¼
0 1 0

0 0 1

0 �171 �101:71

264
375xþ 0

0

1

264
375u ¼ Axþ Bu ð12:131aÞ

y ¼ ½ 1325 0 0 �x ¼ Cx ð12:131bÞ
We now pause in our design to evaluate the controllability of the system. The

controllability matrix, CM, is

CM ¼ B AB A2B
� � 0 0 1

0 1 �101:71

1 �101:71 10; 173:92

264
375 ð12:132Þ

The determinant of CM is �1; thus, the system is controllable.

u
1

x3 x2 x1

1325
y

–101.71

–171

1
s

1
s

1
s

FIGURE 12.24 Signal-flow graph for
GðsÞ ¼ 1325=½sðs2 þ 101:71sþ 171Þ�
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Continuing with the design of the controller, we show the controller’s configu-
ration with the feedback from all state variables in Figure 12.25. We now find the
characteristic equation of the system of Figure 12.25. From Eq. (12.7) and Eq.
(12.131a), the system matrix, A� BK, is

A� BK ¼
0 1 0

0 0 1

�k1 �ð171 þ k2Þ �ð101:71 þ k3Þ

264
375 ð12:133Þ

Thus, the closed-loop system’s characteristic equation is

det½sI� ðA� BKÞ� ¼ s3 þ ð101:71 þ k3Þs2 þ ð171 þ k2Þsþ k1 ¼ 0 ð12:134Þ
Matching the coefficients of Eq. (12.129) with those of Eq. (12.134), we evaluate
the ki’s as follows:

k1 ¼ 1832 ð12:135aÞ
k2 ¼ 194:8 ð12:135bÞ
k3 ¼ �53:71 ð12:135cÞ

Observer Design: Before designing the observer, we test the system for observability.
Using the A and C matrices from Eqs. (12.131), the observability matrix, OM, is

OM ¼
C

CA

CA2

264
375 ¼

1325 0 0

0 1325 0

0 0 1325

264
375 ð12:136Þ

The determinant ofOM is 13253. Thus, OM is of rank 3, and the system is observable.
We now proceed to design the observer. Since the order of the system is not high, we

will design the observer directly without first converting to observer canonical form.
From Eq. (12.64a) we need first to findA� LC.A andC from Eqs. (12.131) along with

L ¼
l1
l2
l3

24 35 ð12:137Þ

u
1

x3 x2 x1

1325
y

–101.71

–171

–k1

–k2

–k3

1
s

1
s

1
s

FIGURE 12.25 Plant with state-variable feedback for controller design
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are used to evaluate A� LC as follows:

A� LC ¼
�1325l1 1 0

�1325l2 0 1

�1325l3 �171 �101:71

264
375 ð12:138Þ

The characteristic equation for the observer is now evaluated as

det½lI� ðA� LCÞ� ¼ l3 þ ð1325l1 þ 101:71Þl2

þ ð134;800l1 þ 1325l2 þ 171Þl
þ ð226;600l1 þ 134;800l2 þ 1325l3Þ

¼ 0 ð12:139Þ
From the problem statement, the poles of the observer are to be placed to

yield a 10% overshoot and a natural frequency 10 times that of the system’s
dominant pair of poles. Thus, the observer’s dominant poles yield ½s2 þ ð2 � 0:591
� 67:7Þsþ 67:72� ¼ ðs2 þ 80sþ 4583Þ. The real part of the roots of this polynomial
is �40. The third pole is then placed 10 times farther from the imaginary axis at
�400. The composite characteristic equation for the observer is

ðs2 þ 80sþ 4583Þðsþ 400Þ ¼ s3 þ 480s2 þ 36,580sþ 1,833,000 ¼ 0 ð12:140Þ
Matching coefficients from Eqs. (12.139) and (12.140), we solve for the observer
gains:

l1 ¼ 0:286 ð12:141aÞ
l2 ¼ �1:57 ð12:141bÞ
l3 ¼ 1494 ð12:141cÞ

Figure 12.26, which follows the general configuration of Figure 12.23, shows the
completed design, including the controller and the observer.

Case Study 707
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3l = 1494

Observer

–k1 = –1832
Controller

Plant
y

11

–k2 = –194.8
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FIGURE 12.26 Completed state-
space design for the antenna
azimuth position control
system, showing controller
and observer
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The results of the design are shown in Figure 12.27. Figure 12.27(a) shows the
impulse response of the closed-loop system without any difference between the
plant and its modeling as an observer. The undershoot and settling time approxi-
mately meet the requirements set forth in the problem statement of 10% and
1 second, respectively. In Figure 12.27(b), we see the response designed into
the observer. An initial condition of 0.006 was given to x1 in the plant to make
the modeling of the plant and observer different. Notice that the observer’s
response follows the plant’s response by the time 0.06 second is reached.

CHALLENGE: You are now given a case study to test your knowledge of this
chapter’s objectives: You are given the antenna azimuth position control system
shown on the front endpapers, Configuration 3. If the preamplifier gain K ¼ 20, do
the following:

a. Design a controller to yield 15% overshoot and a settling time of 2 seconds.
Place the third pole 10 times as far from the imaginary axis as the second-order
dominant pole pair. Use physical variables as follows: power amplifier output,
motor angular velocity, and motor displacement.

b. Redraw the schematic shown on the front endpapers, showing a tachometer that
yields rate feedback along with any added gains or attenuators required to
implement the state-variable feedback gains.

FIGURE 12.27 Designed response
of antenna azimuth position
control system: a. impulse
response—plant and observer
with the same initial conditions,
x1ð0Þ ¼ x̂1ð0Þ ¼ 0; b. portion of
impulse response—plant and
observer with different initial
conditions, x̂1ð0Þ ¼ 0:006 for the
plant, x̂1ð0Þ ¼ 0 for the observer
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c. Assume that the tachometer is not available to provide rate feedback. Design an
observer to estimate the physical variables’ states. The observer will respond
with 10% overshoot and a natural frequency 10 times as great as the system
response. Place the observer’s third pole 10 times as far from the imaginary axis
as the observer’s dominant second-order pole pair.

d. Redraw the schematic on the front endpapers, showing the implementation of
the controller and the observer.

e. Repeat Parts a and c using MATLAB.

Summary

This chapter has followed the path established by Chapters 9 and 11—control system
design. Chapter 9 used root locus techniques to design a control system with a
desired transient response. Sinusoidal frequency response techniques for design
were covered in Chapter 11, and in this chapter we used state-space design
techniques.

State-space design consists of specifying the system’s desired pole locations
and then designing a controller consisting of state-variable feedback gains to meet
these requirements. If the state variables are not available, an observer is designed to
emulate the plant and provide estimated state variables.

Controller design consists of feeding back the state variables to the input, u,
of the system through specified gains. The values of these gains are found
by matching the coefficients of the system’s characteristic equation with the
coefficients of the desired characteristic equation. In some cases the control
signal, u, cannot affect one or more state variables. We call such a system
uncontrollable. For this system, a total design is not possible. Using the controlla-
bility matrix, a designer can tell whether or not a system is controllable prior to
the design.

Observer design consists of feeding back the error between the actual output
and the estimated output. This error is fed back through specified gains to the
derivatives of the estimated state variables. The values of these gains are also found
by matching the coefficients of the observer’s characteristic equation with the
coefficients of the desired characteristic equation. The response of the observer
is designed to be faster than that of the controller, so the estimated state variables
effectively appear instantaneously at the controller. For some systems, the state
variables cannot be deduced from the output of the system, as is required by the
observer. We call such systems unobservable. Using the observability matrix, the
designer can tell whether or not a system is observable. Observers can be designed
only for observable systems.

Finally, we discussed ways of improving the steady-state error performance of
systems represented in state space. The addition of an integration before the
controlled plant yields improvement in the steady-state error. In this chapter,
this additional integration was incorporated into the controller design.

Three advantages of state-space design are apparent. First, in contrast to the
root locus method, all pole locations can be specified to ensure a negligible effect of

Summary 709
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the nondominant poles upon the transient response. With the root locus, we were
forced to justify an assumption that the nondominant poles did not appreciably
affect the transient response. We were not always able to do so. Second, with the use
of an observer, we are no longer forced to acquire the actual system variables for
feedback. The advantage here is that sometimes the variables cannot be physically
accessed, or it may be too expensive to provide that access. Finally, the methods
shown lend themselves to design automation using the digital computer.

A disadvantage of the design methods covered in this chapter is the designer’s
inability to design the location of open- or closed-loop zeros that may affect the
transient response. In root locus or frequency response design, the zeros of the lag or
lead compensator can be specified. Another disadvantage of state-space methods
concerns the designer’s ability to relate all pole locations to the desired response; this
relationship is not always apparent. Also, once the design is completed, we may not
be satisfied with the sensitivity to parameter changes.

Finally, as previously discussed, state-space techniques do not satisfy our
intuition as much as root locus techniques, where the effect of parameter changes
can be immediately seen as changes in closed-loop pole locations.

In the next chapter we return to the frequency domain and design digital
systems using gain adjustment and cascade compensation.

Review Questions

1. Briefly describe an advantage that state-space techniques have over root locus
techniques in the placement of closed-loop poles for transient response design.

2. Briefly describe the design procedure for a controller.

3. Different signal-flow graphs can represent the same system. Which form facili-
tates the calculation of the variable gains during controller design?

4. In order to effect a complete controller design, a system must be controllable.
Describe the physical meaning of controllability.

5. Under what conditions can inspection of the signal-flow graph of a system yield
immediate determination of controllability?

6. In order to determine controllability mathematically, the controllability matrix
is formed, and its rank evaluated. What is the final step in determining
controllability if the controllability matrix is a square matrix?

7. What is an observer?

8. Under what conditions would you use an observer in your state-space design of a
control system?

9. Briefly describe the configuration of an observer.

10. What plant representation lends itself to easier design of an observer?

11. Briefly describe the design technique for an observer, given the configuration
you described in Question 9.

12. Compare the major difference in the transient response of an observer to that of
a controller. Why does this difference exist?

13. From what equation do we find the characteristic equation of the controller-
compensated system?

14. From what equation do we find the characteristic equation of the observer?
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15. In order to effect a complete observer design, a system must be observable.
Describe the physical meaning of observability.

16. Under what conditions can inspection of the signal-flow graph of a system yield
immediate determination of observability?

17. In order to determine observability mathematically, the observability matrix is
formed and its rank evaluated. What is the final step in determining observ-
ability if the observability matrix is a square matrix?

Problems

1. Consider the following open-loop transfer func-
tions, where GðsÞ ¼ YðsÞ=UðsÞ, Y(s) is the Laplace
transform of the output, and U(s) is the Laplace
transform of the input control signal:

i. GðsÞ ¼ ðsþ 3Þ
ðsþ 4Þ2

ii. GðsÞ ¼ s

ðsþ 5Þðsþ 7Þ
iii.GðsÞ ¼ 20sðsþ 7Þ

ðsþ 3Þðsþ 7Þðsþ 9Þ
iv. GðsÞ ¼ 30ðsþ 2Þðsþ 3Þ

ðsþ 4Þðsþ 5Þðsþ 6Þ
v. GðsÞ ¼ s2 þ 8sþ 15

ðs2 þ 4sþ 10Þðs2 þ 3sþ 12Þ
For each of these transfer functions, do the follow-
ing: [Section: 12.2]

a. Draw the signal-flow graph in phase-variable
form.

b. Add state-variable feedback to the signal-flow
graph.

c. For each closed-loop signal-flow graph, write the
state equations.

d. Write, by inspection, the closed-loop transfer
function, T(s), for your closed-loop signal-flow
graphs.

e. Verify your answers for T(s) by finding the
closed-loop transfer functions from the state
equations and Eq. (3.73).

2. The following open-loop transfer
functions can be represented by
signal-flow graphs in cascade form.

i. GðsÞ ¼ 30ðsþ 2Þðsþ 7Þ
sðsþ 3Þðsþ 5Þ

ii. GðsÞ ¼ 5ðs2 þ 3sþ 7Þ
ðsþ 2Þðs2 þ 2sþ 10Þ

For each, do the following: [Section: 12.4]

a. Draw the signal-flow graph and show the state-
variable feedback.

b. Find the closed-loop transfer function with state-
variable feedback.

3. The following open-loop transfer functions can be
represented by signal-flow graphs in parallel form.

i. GðsÞ ¼ 50ðs2 þ 7sþ 25Þ
sðsþ 10Þðsþ 20Þ

ii. GðsÞ ¼ 50ðsþ 3Þðsþ 4Þ
ðsþ 5Þðsþ 6Þðsþ 7Þ

For each, do the following: [Section: 12.4]

a. Draw the signal-flow graph and show the state-
variable feedback.

b. Find the closed-loop transfer function with state-
variable feedback.

4. Given the following open-loop plant, [Section: 12.2]

GðsÞ ¼ 20

ðsþ 2Þðsþ 4Þðsþ 8Þ
design a controller to yield a 15% overshoot and a
settling time of 0.75 second. Place the third pole 10
times as far from the imaginary axis as the dominant
pole pair. Use the phase variables for state-variable
feedback.

5. Section 12.2 showed that controller design is easier
to implement if the uncompensated system is rep-
resented in phase-variable form with its typical
lower companion matrix. We alluded to the fact
that the design can just as easily progress using the
controller canonical form with its upper companion
matrix. [Section: 12.2]
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a. Redo the general controller design covered in
Section 12.2, assuming that the plant is repre-
sented in controller canonical form rather than
phase-variable form.

b. Apply your derivation to Example 12.1 if the
uncompensated plant is represented in controller
canonical form.

6. Given the following open-loop plant:
[Section: 12.2]

GðsÞ ¼ 100ðsþ 2Þðsþ 20Þ
ðsþ 1Þðsþ 3Þðsþ 4Þ

design a controller to yield 15% overshoot with a
peak time of 0.5 second. Use the controller canoni-
cal form for state-variable feedback.

7. Given the following open-loop plant: [Section: 12.2]

GðsÞ ¼ 20ðsþ 2Þ
sðsþ 5Þðsþ 7Þ

design a controller to yield a 10% overshoot and a
settling time of 2 seconds. Place the third pole 10 times
asfarfromtheimaginaryaxisasthedominantpolepair.
Use the phase variables for state-variable feedback.

8. Repeat Problem 4 assuming that the plant is repre-
sented in the cascade form. Do not convert to phase-
variable form. [Section: 12.4]

9. Repeat Problem 7 assuming that the plant is repre-
sented in the parallel form. Do not convert to phase-
variable form. [Section: 12.4]

10. Given the plant shown in Figure P12.1,
what relationship exists between b1 and
b2 to make the system uncontrollable?
[Section: 12.3]

11. For each of the plants represented by signal-
flow graphs in Figure P12.2, determine the con-
trollability. If the controllability can be determined
by inspection, state that it can and then verify your
conclusions using the controllability matrix.
[Section: 12.3]

12. Use MATLAB to determine the
controllabilityofthesystems
of Figure P12.2(d) and (f).

13. In Section 12.4, we discussed how to design a con-
troller for systems not represented in phase-variable
form with its typical lower companion matrix. We
described how to convert the system to phase-
variable form, design the controller, and convert
back to the original representation. This technique
can be applied just as easily if the original represen-
tation is converted to controller canonical form with
its typical upper companion matrix. Redo Example
12.4 in the text by designing the controller after
converting the uncompensated plant to controller
canonical form. [Section: 12.4]

14. Consider the following transfer function:

GðsÞ ¼ ðsþ 6Þ
ðsþ 3Þðsþ 8Þðsþ 10Þ

If the system is represented in cascade form, as
shown in Figure P12.3, design a controller to yield
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a closed-loop response of 10% overshoot with a
settling time of 1 second. Design the controller
by first transforming the plant to phase variables.
[Section: 12.4]

15. Use MATLAB to design the
controller gains for the
system given in Problem 14.

16. Repeat Problem 14 assuming that the plant is rep-
resented in parallel form. [Section: 12.4]

17. The open-loop system of Problem 14
is represented as shown in Figure P12.4.
If the output of each block
is assigned to be a state variable,
design the controller gains for feedback from these
state variables. [Section: 12.4]
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18. If an open-loop plant,

GðsÞ ¼ 100

sðsþ 5Þðsþ 9Þ
is represented in parallel form, design a controller
to yield a closed-loop response of 15% overshoot
and a peak time of 0.2 second. Design the controller
by first transforming the plant to controller canoni-
cal form. [Section: 12.4]

19. For a specific individual, the
lineartime-invariantmodelof
the hypothalamic-pituitary-
adrenal axis of the endocrine system with
five state variables has been found to be
(Kyrylov, 2005)

_x1

_x2

_x3

_x4

_x5

26666664

37777775¼
�0:014 0 �1:4 0 0

0:023 �0:023 �0:023 0 0

0:134 0:67 �0:67 0:38 0:003264

0 0 0:06 �0:06 0

0 0 0:0017 0 �0:001

26666664

37777775

�

x1

x2

x3

x4

x5

26666664

37777775þ

1

0

0

0

0

26666664

37777775d0

The state-variable definitions were
given in Problem 25, Chapter 3.

a. Use MATLAB to determine if the system
is controllable.

b. Use MATLAB to express the matrices A
and B in phase-variable form.

20. Consider the plant

GðsÞ ¼ 1

sðsþ 3Þðsþ 7Þ
whose state variables are not available. Design an
observer for the observer canonical variables to
yield a transient response described by z ¼ 0:4
and vn ¼ 75. Place the third pole 10 times farther

from the imaginary axis than the dominant poles.
[Section: 12.5]

21. Design an observer for the plant

GðsÞ ¼ 10

ðsþ 3Þðsþ 7Þðsþ 15Þ
operating with 10% overshoot and 2 seconds peak
time. Design the observer to respond 10 times as fast
as the plant. Place the observer third pole 20 times
as far from the imaginary axis as the observer
dominant poles. Assume the plant is represented
in observer canonical form. [Section: 12.5]

22. Repeat Problem 20 assuming that the plant is rep-
resented in phase-variable form. Do not convert to
observer canonical form. [Section: 12.7]

23. Consider the plant

GðsÞ ¼ ðsþ 2Þ
ðsþ 5Þðsþ 9Þ

whose phase variables are not available. Design an
observer for the phase variables with a transient
response described by z ¼ 0:6 and vn ¼ 120. Do not
convert to observer canonical form. [Section: 12.7]

24. Determine whether or not each of the systems
shown in Figure P12.2 is observable. [Section: 12.6]

25. Use MATLAB to determine the
observability of the systems
of Figure P12.2(a) and (f).

26. Given the plant of Figure P12.5, what relationship
must exist between c1 and c2 in order for the system
to be unobservable? [Section: 12.6]

yu

–1

–2

1

x2

c1

c2

x1

1
s

1
s

FIGURE P12.5

1
s + 3

1
s + 8 s + 10
s + 6U(s) Y(s) = Z1(s)Z3(s) Z2(s)

FIGURE P12.4
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27. Design an observer for the plant

GðsÞ ¼ 1

ðsþ 5Þðsþ 13Þðsþ 20Þ
represented in cascade form. Transform the plant to
observer canonical form for the design. Then trans-
form the design back to cascade form. The charac-
teristic polynomial for the observer is to be
s3 þ 600s2þ 40;000sþ 1;500;000.

28. Use MATLAB to design the
observer gains for the system
given in Problem 27.

29. Repeat Problem 27 assuming that the plant is rep-
resented in parallel form. [Section: 12.7]

30. Design an observer for

GðsÞ ¼ 50

ðsþ 3Þðsþ 6Þðsþ 9Þ
represented in phase-variable form with a desired
performance of 10% overshoot and a settling time
of 0.5 second. The observer will be 10 times as fast as
the plant, and the observer’s nondominant pole will
be 10 times as far from the imaginary axis as the
observer’s dominant poles. Design the observer
by first converting to observer canonical form.
[Section: 12.7]

31. Observability and controllability properties depend
on the state-space representation chosen for a given
system. In general, observability and controllability
are affected when pole-zero cancellations are pres-
ent in the transfer function. Consider the following
two systems with representations:

_xi ¼ Aixi ¼ Bir

y ¼ Cixi;

A1 ¼
�

0 1

�2 �3

�
; B1 ¼

�
0

1

�
; C1 ¼ �

2 0
�

A2 ¼
0 1 0

0 0 1

�6 �11 �6

24 35; B2 ¼
0

0

1

24 35; C2 ¼ ½ 6 2 0 �

a. Show that both systems have the same

transfer function GiðsÞ ¼ YðsÞ
RðsÞ after pole-zero

cancellations.

b. Evaluate the observability of both systems.

32. Given the plant

_x ¼ �1 1
0 2

� �
xþ 0

1

� �
u; y ¼ 1 1½ �x

design an integral controller to yield a 10% over-
shoot, 0.5-second settling time, and zero steady-
state error for a step input. [Section: 12.8]

33. Repeat Problem 32 for the following plant:
[Section: 12.8]

_x ¼ �2 1
0 �5

� �
xþ 0

1

� �
u; y ¼ 1 1½ �x

DESIGN PROBLEMS
34. A magnetic levitation system is described in Problem

50 in Chapter 9 (Cho, 1993). Remove the photocell in
Figure P9.14(b) and design a controller for phase
variables to yield a step response with 5% overshoot
and a settling time of 0.5 second.

35. Problem 24 in Chapter 3 introduced the model for
patients treated under a regimen of a single day of
Glargine insulin (Tar�ın, 2005). The model to find the
response for a specific patient to medication can be
expressed in phase-variable form with

A ¼
0 1 0

0 0 1

�501:6 � 10�6 �128:8 � 10�3 �854 � 10�3

264
375;

B ¼
1

0

0

264
375; C ¼ 0:78 � 10�4 41:4 � 10�4 0:01

� �
;

D ¼ 0

The state variables will take on a different signifi-
cance in this expression, but the input and the
output remain the same. Recall that u ¼ external
insulin flow, and y ¼ plasma insulin concentration.

a. Obtain a state-feedback gain matrix so that the
closed-loop system will have two of its poles
placed at �1=15 and the third pole at �1=2.

b. Use MATLAB to verify that the
poles appear at the positions
specified in Part a.

36. Figure P12.6 shows a continuous stirred tank reactor
in which an aqueous solution of sodium acetate
(CH3COONa) is neutralized in the mixing tank
with hydrochloric acid (HCl) to maintain a particu-
lar pH in the mixing tank.

The amount of acid in the mix is controlled by
varying the rotational speed of a feeding peristaltic
pump. A nominal linearized transfer function
from HCl flowrate to pH has been shown to be
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(Tadeo, 2000)

GðsÞ ¼ �0:9580 � 10�4s� 0:01197 � 10�4

s3 þ 0:5250s2 þ 0:01265sþ 0:000078

a. Writethesysteminstate-spacephase-variableform.

b. Use state-feedback methods to design a matrix K
that will yield an overdamped output pH re-
sponse with a settling time of Ts � 5 min for a
step input change in pH.

c. Simulate the step response
of the resulting closed-loop
system using MATLAB.

37. In the dc-dc converter of Problem 67, Chapter 4
(Van Dijk, 1995) with L ¼ 6 mH, C ¼ 1 mF, R ¼
100 V, a 50% PWM duty cycle, and assuming the
system’s output is the voltage across the capacitor,
the model can be expressed as

_iL
_uC

" #
¼ 0 �83:33

500 �10

� �
iL

uC

� �
þ 166:67

0

� �
Es

y¼ 0 1½ � iL

uC

� �

a. Find the system’s transfer function.

b. Express the system’s state equations in phase-
variable form.

c. Find a set of state-feedback gains to obtain 20%
overshoot and a settling time of 0.5 second in the
phase-variable system.

d. Obtain the corresponding set of state-feedback
gains in the original system.

e. Verify that the set of gains in Part d places the
closed-loop poles at the desired positions.

f. Simulate the unit step
response of the system using
MATLAB.

38. a. Design an observer for the dc-dc converter of
Problem 37. The observer should have time
constants 10 times smaller than those of the
original system.

b. Simulate your system and
observer for a unit step input
using Simulink. Assume that
the initial conditions for the original

system are xð0Þ ¼ 2
1

� �
. The observer

should have initial conditions

x̂ð0Þ ¼ 0
0

� �
.

39. a. Design an observer for the neutralization system
using the continuous stirred tank reactor of

Inlet stream

pH
measurement

Control
signal

Control acid stream

Peristaltic
pump

Acid tankMixing tankLiquid pump

Liquid tank

FIGURE P12.6 (# 2000 IEEE)
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Problem 36. The observer should have time
constants 10 times smaller than those of the
original system. Assume that the original state
variables are those obtained in the phase-
variable representation.

b. Simulate your system and
observer for a unit step in-
putusingSimulink.Assumethattheini-
tial conditions for the original system

are xð0Þ ¼
�1
�10
3

24 35. The observer should

have initial conditions x̂ð0Þ ¼
0
0
0

24 35.
40. The conceptual block diagram of a gas-fired heater

is shown in Figure P12.7. The commanded fuel
pressure is proportional to the desired temperature.
The difference between the commanded fuel pres-
sure and a measured pressure related to the output
temperature is used to actuate a valve and release
fuel to the heater. The rate of fuel flow determines
the temperature. When the output temperature
equals the equivalent commanded temperature as
determined by the commanded fuel pressure, the
fuel flow is stopped and the heater shuts off (Tyner,
1968).

If the transfer function of the heater, GH(s), is

GHðsÞ ¼ 1

ðsþ 0:4Þðsþ 0:8Þ
degrees F

ft3/min

and the transfer function of the fuel valve, Gv(s), is

GvðsÞ ¼ 5

sþ 5

ft3/min

psi

replace the temperature feedback path with a
phase-variable controller that yields a 5% over-
shoot and a settling time of 10 minutes. Also,
design an observer that will respond 10 times
faster than the system but with the same percent
overshoot.

41. a. Redesign the dc-dc converter system of Problem
37 to include integral control.

b. Simulate your system for a
step input using Simulink
and verify that the specifi-
cations are met. In particular, verify
that the system has zero steady-state
error.

42. The floppy disk drive of Problem 57
in Chapter 8 is to be redesigned
using state-variable feedback. The
controller is replaced by a unity dc gain amplifier,
GaðsÞ ¼ 800=ðsþ 800Þ. The plant, GpðsÞ ¼ 20;000=
½sðsþ 100Þ�, is in cascade with the amplifier.

a. Design a controller to yield 10% overshoot and a
settling time of 0.05 second. Assume that the
state variables are the output position, output
velocity, and amplifier output.

b. Evaluate the steady-state error and redesign
the system with an integral controller to re-
duce the steady-state error to zero. (Use of a
program with symbolic capability is highly
recommended.)

c. Simulate the step response
for both the controller-
compensated and integral
controller-compensated systems.
Use MATLAB or any other computer
program.

Commanded
fuel

pressure
Fuel
valve Heater

Temperature
sensor and gain

Fuel
pressure

error Temperature

Fuel
volume

flow
rate

+

–

FIGURE P12.7 Block diagram of a gas-fired heater
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43. Given the angle of attack
control system for the AFTI/
F-16 aircraft shown in Figure
P9.15 (Monahemi, 1992), use MATLAB to
design a controller for the plant to
yield 10% overshoot with a settling
time of 0.5 second. Assume that the phase
variables are accessible. Have the pro-
gram display the step response of the
compensated system.

44. For the angle of attack control
system of Problem 43, use MATLAB
to design an observer for the
phase variables that is 15 times faster
than the controller designed system.

45. For the angle of attack control system of Problem
43, do the following:

a. Design an integral control using phase variables
to reduce the steady-state error to zero. (Use of a
program with symbolic capability is highly
recommended.)

b. Use MATLAB to obtain the step
response.

46. The use of feedback control to vary the pitch angle
in the blades of a variable speed wind turbine allows
power generation optimization under variable wind
conditions (Liu, 2008). At a specific operating point,
it is possible to linearize turbine models. For exam-
ple, the model of a three-blade turbine with a 15 m
radius working in 12 m/s wind-speed and generating
220 V can be expressed as:

_x ¼

� 5 0 0 0 0

0 0 1 0 0

�10:5229 �1066:67 �3:38028 23:5107 0

0 993:804 3:125 �23:5107 0

0 0 0 10 �10

266666664

377777775
x

þ

5

0

0

0

0

266666666664

377777777775
u

y ¼ 0 0 0 1:223x105 0
� �

x

where the state variable vector is given by

x ¼ b j _j vg vgm

� �
Here, b ¼ pitch angle of the wind turbine blades,
j ¼ relative angle of the secondary shaft, vg ¼
generator speed, and vgm ¼ generator measure-
ment speed. The system input is u, the pitch angle
reference, and the output is y, the active power
generated.

a. Find a state feedback vector gain such that the
system responds with a 10% overshoot and a
settling time of 2 seconds for a step input.

b. Use MATLAB to verify the
operation of the system
under state feedback.

PROGRESSIVE ANALYSIS AND DESIGN PROBLEMS
47. High-speed rail pantograph.Problem 21 in Chapter 1

discusses active control of a pantograph mechanism
for high-speed rail systems (O’Connor, 1997). In
Problem 79(a), Chapter 5, you found the block dia-
gram for the active pantograph control system. For
the open-loop portion of the pantograph system
modeled in Chapter 5, do the following:

a. Design a controller to yield 20% overshoot and a
1-second settling time.

b. Repeat Part a with a zero steady-state error.

48. Control of HIV/AIDS. The linearized model of HIV
infection when RTIs are used for treatment was
introduced in Chapter 4 and repeated here for
convenience (Craig, 2004):

_T

_T
	

_v

2664
3775 ¼

�0:04167 0 �0:0058

0:0217 �0:24 0:0058

0 100 �2:4

264
375 T

T	

v

264
375

þ
5:2

�5:2

0

264
375u1

y ¼ 0 0 1½ �
T

T	

v

264
375
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T represents the number of healthy T-cells, T	 the
number of infected cells, and v the number of free
viruses.

a. Design a state-feedback scheme to obtain

(1) zero steady-state error for step inputs

(2) 10% overshoot

(3) a settling time of approximately 100 days

(Hint: the system’s transfer function has an open-
loop zero at approximately �0.02. Use one of the
poles in the desired closed-loop-pole polynomial to
eliminate this zero. Place the higher-order pole 6.25
times further than the dominant pair.)

b. Simulate the unit step
response of your design
using Simulink.

49. Hybrid vehicle. In Problem 3.32, we introduced the
idea that when an electric motor is the sole motive
force provider for a hybrid electric vehicle (HEV),
the forward paths of all HEV topologies are simi-
lar. It was noted that, in general, the forward path
of an HEV cruise control system can be repre-
sented by a block diagram similar to that of Figure
P3.19 (Preitl, 2007). The diagram is shown in
Figure P12.8, with the parameters substituted by
their numerical values from Problem 6.69; the
motor armature represented as a first-order system

with a unity steady-state gain and a time constant
of 50 ms; and the power amplifier gain set to 50.
Whereas the state variables remain as the motor
angular speed, v tð Þ, and armature current, Ia tð Þ, we
assume now that we have only one input variable,
uc tð Þ, the command voltage from the electronic
control unit, and one output variable, car speed,
v ¼ rv=itot ¼ 0:06154v. The change in the load
torque, Tc tð Þ, is represented as an internal feed-
back proportional to v tð Þ.

Looking at the diagram, the state equations may
be written as:

_Ia

_v

" #
¼ �20 �40

0:2491 �0:0191

� �
Ia

v

� �
þ 0

1000

� �
ucðtÞ

yðtÞ ¼ vðtÞ ¼ ½0 0:05154� Ia

v

� �
a. Design an integral controller for %OS 
 4.32%, a

settling time, Ts
 4.4 sec, and a zero steady-state
error for a step input (Hint: To account for the effect
of the integral controller on the transient response,
use Ts ¼ 4 seconds in your calculation of the value
of the natural frequency, vn, of the required domi-
nant poles).

b. Use MATLAB to verify that the
design requirements are met.

2

0.03787

20
50 1.8

+ +
– –

–

0.1

0.06154
s + 20ua(t)

Ia(t)

Ia(t)

Tf  (t)

Tc (t)

ω (t) ν (t)

ω (t)

T(t)
uc(t)

eb(t)

1
7.226 s

FIGURE P12.8

Cyber Exploration Laboratory

Experiment 12.1

Objective To simulate a system that has been designed for transient response via
a state-space controller and observer.
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Minimum Required Software Packages MATLAB, Simulink, and the
Control System Toolbox

Prelab

1. This experiment is based upon your design of a controller and observer
as specified in the Case Study Challenge problem in Chapter 12. Once you
have completed the controller and observer design in that problem, go on to
Prelab 2.

2. What is the controller gain vector for your design of the system specified in the
Case Study Challenge problem in Chapter 12?

3. What is the observer gain vector for your design of the system specified in the
Case Study Challenge problem in Chapter 12?

4. Draw a Simulink diagram to simulate the system. Show the system, the controller,
and the observer using the physical variables specified in the Case Study
Challenge problem in Chapter 12.

Lab

1. Using Simulink and your diagram from Prelab 4, produce the Simulink diagram
from which you can simulate the response.

2. Produce response plots of the system and the observer for a step input.

3. Measure the percent overshoot and the settling time for both plots.

Postlab

1. Make a table showing the design specifications and the simulation results for
percent overshoot and settling time.

2. Compare the design specifications with the simulation results for both the system
response and the observer response. Explain any discrepancies.

3. Describe any problems you had implementing your design.

Experiment 12.2

Objective To use LabVIEW to design a controller and observer

Minimum Required Software Packages LabVIEW, the Control Design
and Simulation Module, and the MathScript RT Module.

Prelab Design a LabVIEW VI that will design the controller and observer for the
Antenna Control Case Study in this chapter. Your VI will have the following inputs:
phase-variable form of the plant, the controller poles, and the observer poles to meet
the requirements. Your indicators will display the following: the phase-variable
equation of the plant, whether or not the system is controllable, the observer
canonical equation of the observer, whether or not the system is observable, the
gains for the controller, and the gains for the observer. Also provide the impulse
response and initial response curves shown in Figure 12.27. In addition, provide
similar response curves for the state variables.
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Lab Run your VI and collect the data from which to compare the results of the
case study with those found from your VI.

Postlab Compare and summarize the results found from your VI with those of the
Chapter 12 Antenna Control Case Study.
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